Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 31 - 36 of 36

Full-Text Articles in Nanoscience and Nanotechnology

Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai Apr 2011

Direct Current Electrokinetic Particle Transport In Micro/Nano-Fluidics, Ye Ai

Mechanical & Aerospace Engineering Theses & Dissertations

Electrokinetics has been widely used to propel and manipulate particles in micro/nano-fluidics. The first part of this dissertation focuses on numerical and experimental studies of direct current (DC) electrokinetic particle transport in microfluidics, with emphasis on dielectrophoretic (DEP) effect. Especially, the electrokinetic transports of spherical particles in a converging-diverging microchannel and an L-shaped microchannel, and cylindrical algal cells in a straight microchannel have been numerically and experimentally studied. The numerical predictions are in quantitative agreement with our own and other researchers' experimental results. It has been demonstrated that the DC DEP effect, neglected in existing numerical models, plays an important …


Electrostatic Discharge Properties Of Irradiated Nanocomposites, Joshua D. Mcgary Mar 2009

Electrostatic Discharge Properties Of Irradiated Nanocomposites, Joshua D. Mcgary

Theses and Dissertations

Modernization in space systems requires employment of new light-weight, high performance composite materials that reduce bulk weight and increase structural integrity. This thesis explored the behavior of one such material prior to and following a 35-year simulated space radiation life-cycle. Select electrical properties of nickel nanostrandTM-carbon composites in seven configurations were characterized prior to electron irradiation via surface and bulk resistivity measurements and contact electrostatic discharge (ESD) measurements. Following irradiation at a fluence of 1016 e-/cm2 at an average energy of 500 keV, measurements were repeated and compared against pre-irradiation data. Configuration D is …


Fatigue Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Javier Rodriguez Mar 2009

Fatigue Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Javier Rodriguez

Theses and Dissertations

Existing nanocomposite materials used for satellite applications don't offer the required conductivity and electromagnetic shielding protection, requiring metal shields in order to survive in space. The AFRL Materials and Manufacturing Directorate in conjunction with the private sector have developed a material that promises to blend the attributes of nanocomposites and metal materials. The M55J/RS3 material consists of carbon fibers combined with a polyisocyanate matrix, in which Nickel nanostrandsTM are added. The research effort investigated the changes in the EMI and ESD of the material after being subjected to cyclic loads. Four configurations of a symmetric layup with fibers oriented …


Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Benjamin T. Harder Jun 2008

Evaluation Of Nanocomposites As Lightweight Electronic Enclosures For Satellites' Applications, Benjamin T. Harder

Theses and Dissertations

The United States military is exploring the use of nanocomposite materials for satellite structural applications. Current composite spacecraft structures are nonconductive and must have expensive shielding materials applied in order to protect the spacecraft from catastrophic damage that can be caused by electromagnetic interference (EMI) and/or electrostatic discharge (ESD) which are characteristics of the space environment. Conductive nanocomposites are being developed for spacecraft structures that will provide ESD and EMI shielding protection without the need for expensive secondary shielding materials. This thesis studied one such material consisting of M55J/RS-3 composite combined with nickel nanostrands™. Four different configurations were tested for …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …


Microstructural Study Of Nanoprecipitates In Rra Treated Al-7075 T6 Using Afm/Ufm/Stem, Samuel J.M. Kuhr, Margaret Pinnell, Daniel Eylon Mar 2003

Microstructural Study Of Nanoprecipitates In Rra Treated Al-7075 T6 Using Afm/Ufm/Stem, Samuel J.M. Kuhr, Margaret Pinnell, Daniel Eylon

Mechanical and Aerospace Engineering Faculty Publications

7075 T651 aluminum alloy is frequently used in aircraft applications for its high strength to weight ratio. However, aircraft parts made of this alloy have been plagued by stress corrosion cracking (SCC). Retrogression and re-aging (RRA) is a post T651 two-stage heat treatment that provides improved SCC resistance with minimal loss in tensile strength. In this study, various forms of microscopy and mechanical testing are used to investigate how the RRA process affects the microstructure.

The microscopic observations in this paper show that the precipitates in the aluminum alloy coarsen and that the grain boundary regions are depleted of copper …