Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Additive manufacturing

Discipline
Institution
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Manufacturing

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


A Machine Learning Method For The Prediction Of Melt Pool Geometries Created By Laser Powder Bed Fusion, Jonathan Ciaccio Dec 2021

A Machine Learning Method For The Prediction Of Melt Pool Geometries Created By Laser Powder Bed Fusion, Jonathan Ciaccio

University of New Orleans Theses and Dissertations

A machine learning model is created to predict melt pool geometries of Ti-6Al-4V alloy created by the laser powder bed fusion process. Data is collected through an extensive literature survey, using results from both experiments and CFD modeling. The model focuses on five key input parameters that influence melt pool geometries: laser power, scanning speed, spot size, powder density, and powder layer thickness. The two outputs of the model are melt pool width and melt pool depth. The model is trained and tested by using the k fold cross validation technique. Multiple regression models are then applied to find the …


Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez Dec 2021

Selective Laser Melting Of Titanium Diboride: A Study Of The Energy Density Effects, Lazaro Lopez Mendez

Theses and Dissertations

Natural titanium diboride (TiB2) has been reported the 5th hardest material on earth. Due to its superior properties, such as high density, high elastic modulus, and high compressive strength, TiB2 becomes one of the most suitable ceramic reinforcements for applications with severe friction and heavy loading conditions. This study is intended to produce TiB2 using 3D additive manufacture (AM) technology, and then to understand the tribological property of the AM fabricated TiB2 specimens. In this study, a laser additive alloying (LAA) process was developed based on a Renishaw AM laser system. One mm thick samples were prepared using the LAA …


Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry Dec 2021

Additive Manufacturing Using Robotic Manipulators, Fdm, And Aerosol Jet Printers., Alexander Curry

Electronic Theses and Dissertations

Additive manufacturing has created countless new opportunities for fabrication of devices in the past few years. Advances in additive manufacturing continue to change the way that many devices are fabricated by simplifying processes and often lowering cost. Fused deposition modeling (FDM) is the most common form of 3D printing. It is a well-developed process that can print various plastic materials into three-dimensional structures. This technology is used in a lot of industries for rapid prototyping and sometimes small batch manufacturing. It is very inexpensive, and a prototype can be created in a few hours, rather than days. This is useful …


Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou Nov 2021

Experimental Investigation Of Additive Manufacturing Of Continuous Carbon Fiber Composites With Multifunctional Electro-Tensile Properties, Ritesh Ghimire, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Manufacturing processes for monofunctional and multifunctional materials vary depending on the design optimization. Multifunctional continuous carbon fiber composites provide great potential in achieving coupled structural and electrical properties for their applications in aircraft, unmanned aircraft systems, and spacecraft. Proper optimization of tensile and electrical properties offers benefits early in the design and continuous operational safety phases to obtain coupled multifunctional properties. In this paper, fused filament fabrication additive manufacturing (AM) technique was used to fabricate continuous carbon fiber solid laminated composites test coupons. The proposed new method characterizes the electrical conductivity's coupled effects on the tensile properties, including the failure …


Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou Nov 2021

Additive Manufacturing Of Stainless Steel -- Copper Functionally Graded Materials Via Inconel 718 Interlayer, Xinchang Zhang, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The joining of dissimilar materials is becoming increasingly prevalent to integrate different material properties to enhance design flexibility and overall performance. This study introduced an innovative approach to additively manufacture copper on 316L stainless steel (SS316L) via Inconel 718 interlayers using directed energy deposition (DED). The novel multi-material structure was studied both experimentally and theoretically. The microstructure, tensile properties, microhardness, and thermal performance of the structure were characterized. Residual stress distribution over the structure was revealed by experimental-validated numerical modeling. The result exhibits that defect-free structures with excellent interfacial bonding can be achieved by introducing Inconel 718 interlayers. The bonding …


A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou Oct 2021

A Novel Laser-Aided Machining And Polishing Process For Additive Manufacturing Materials With Multiple Endmill Emulating Scan Patterns, Mohammad Masud Parvez, Sahil Patel, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In additive manufacturing (AM), the surface roughness of the deposited parts remains significantly higher than the admissible range for most applications. Additionally, the surface topography of AM parts exhibits waviness profiles between tracks and layers. Therefore, post-processing is indispensable to improve surface quality. Laser-aided machining and polishing can be effective surface improvement processes that can be used due to their availability as the primary energy sources in many metal AM processes. While the initial roughness and waviness of the surface of most AM parts are very high, to achieve dimensional accuracy and minimize roughness, a high input energy density is …


Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar Aug 2021

Investigation Of Different Hatch Strategies On High Entropy Alloy Fabrication By Selective Laser Melting, Joni Chandra Dhar

Theses and Dissertations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various hatch strategies and energy densities on the microstructures and other materials properties. 3D samples of CuCrFeNiTiAl alloy were fabricated under different energy densities and with different scan vector lengths. The as-built samples were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that face centered cubic, and body centered …


A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li Jun 2021

A State-Of-The-Art Review Of Laser-Assisted Bioprinting And Its Future Research Trends, Chaoran Dou, Victoria Perez, Jie Qu, Andrew Tsin, Ben Xu, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Bioprinting is an additive manufacturing technology with great potential in medical applications. Among available bioprinting techniques, laser-assisted bioprinting (LAB) is a promising technique due to its high resolution, high cell viability, and the capability to deposit high-viscousity bioink. These characteristics allow the LAB technology to control cells precisely to reconstruct living organs. Recent developments of LAB technologies are reviewed in this paper, covering various designs of LAB printers, research progresses in energy-absorbing layer (EAL), the physical phenomenon that triggers the printing process in terms of bubble formation and jet development, printing process parameters, and major factors related to the post-printing …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey May 2021

Design And Fabrication Of Invar Layup Tool Molds Using Additive And Subtractive Manufacturing, Matthew Lamsey

Masters Theses

The development of novel additive manufacturing technologies, such as Wire Arc Additive Manufacturing (WAAM), has opened the door for the fabrication of complex part geometries that could not be achieved with traditional manufacturing methods. Best practices for designing parts for fabrication with WAAM are still in their infancy. This thesis presents a novel design and fabrication framework for parts created using WAAM, which was realized through the fabrication of two demonstration composite layup tool molds. The framework includes design principles for WAAM, finite element simulation of part performance, metrological analysis of printed preforms, and considerations for closely integrating the WAAM …


Wind Blade Manufacturing For The Cal Poly Wind Power Club, Benjamin E. Thompson, Jake R. Lund, Claudia C. Angeles Mar 2021

Wind Blade Manufacturing For The Cal Poly Wind Power Club, Benjamin E. Thompson, Jake R. Lund, Claudia C. Angeles

Mechanical Engineering

The Cal Poly Wind Power Club is entering the 2021 Collegiate Wind Competition (CWC) in June. Last year, three senior project teams were assigned to collaborate and assist the club with the pitching mechanism, the rotor balancing, and the manufacturing process. As the manufacturing team, the goal of our project was to design a manufacturing process for the bladegeometry given. The manufacturing process was required to meet the team’s expectations and CWC’s performance requirements to place highly in the competition taking place in June 2021.These expectations included creating a manufacturing process that is repeatable and reliable for future competitions. The …


Defect Detection Using Dynamic Analysis For Additive Manufactured Metals, Gita Deonarain Jan 2021

Defect Detection Using Dynamic Analysis For Additive Manufactured Metals, Gita Deonarain

Dissertations, Master's Theses and Master's Reports

Additive manufacturing (AM) has the ability to produce parts with complex geometries and internal features, however, for demanding applications such as the automotive and aerospace industries, it is crucial that the parts can meet the demanding functional and geometric requirements. Quality control for AM parts focuses on nondestructive methods of testing, but many of the current methods are expensive and time-consuming. The research presented in this report explores various methods of nondestructive evaluation (NDE) using dynamic analysis on stainless steel parts produced with selective laser melting (SLM). Methods include, but are not limited to, frequency response functions (FRF), impedance-based measurements, …


Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary Jan 2021

Fabrication Of Silicon Nitride Parts By Ceramic On-Demand Extrusion Process, Sachin Choudhary

Masters Theses

“Ceramic On-Demand Extrusion (CODE) is a patented solid freeform fabrication method for manufacturing high-density monolithic ceramic parts. In the past 5-6 years, the technology has been successfully implemented to fabricate alumina and zirconia parts. The mechanical characterizations also show CODE’s high potential in achieving desired structural properties. The present study covers the fabrication of silicon nitride parts by CODE process, which entailed the design of paste formulation for achieving rheology suitable for dimensional control in fabricated parts and determining firing temperature and the content of sintering additives for silicon nitride green bodies fabricated by CODE. The density, hardness, and fracture …


Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li Jan 2021

Direct Selective Laser Synthesis Of Cucrfenitial High Entropy Alloy From Elemental Powders Through Selective Laser Melting, Joni Dhar, Lazaro Lopez, Shanshan Zhang, Ben Xu, Mohammed Jasim Uddin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study investigated the synthesis of CuCrFeNiTiAl high entropy alloy (HEA) from pure elements using selective laser melting (SLM). The objectives are to validate the feasibility of the HEA fabrication from elemental powder materials, and to examine the effect of various process conditions in SLM, such as laser power, point distance and laser exposure time, on the microstructures formed. The as-built samples under high, medium and low energy densities were characterized by X-ray diffraction (XRD), and the microstructures were observed using scanning electron microscopy (SEM). The XRD results showed that five major crystal structure phases (hexagonal, monoclinic, orthorhombic, body-centered cubic …