Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Manufacturing

Redesigning Products To Optimize Sustainable Performance In Multi-Generational Closed-Loop Production For Advancing The Circular Economy, Buddhika Minendra Hapuwatte Jan 2021

Redesigning Products To Optimize Sustainable Performance In Multi-Generational Closed-Loop Production For Advancing The Circular Economy, Buddhika Minendra Hapuwatte

Theses and Dissertations--Mechanical Engineering

Sustainable manufacturing and the circular economy concepts promote efficient and effective resource use to minimize the adverse economic, environmental, and social impacts of alarmingly increasing consumption rates. Product design is the key to implement these transformations in manufacturing. However, the currently available sustainable and circular design methods are not comprehensive and inadequate—especially for multi-generational products. Therefore, designing sustainable products optimized for circular and closed-loop production systems is a challenging task. The 6Rs concept introduced ‘Redesign’ to modify a product’s engineering specifications and allow sustainable utilization of the end-of-use resources from previous generations, thus closing the production loop. Therefore, the objective …


Additive Manufacturing In Personalized Medicine: Patient-Customized Solid Dose Medicines, And Patient-Customized Wound Care Device, Amir Najarzadeh Jan 2021

Additive Manufacturing In Personalized Medicine: Patient-Customized Solid Dose Medicines, And Patient-Customized Wound Care Device, Amir Najarzadeh

Theses and Dissertations--Mechanical Engineering

Personalized Medicine - from a one-size fits all to a tailored approach is the future in pharmaceutical therapeutics and medical applications. The aim of this study is demonstrate additive manufacturing in two personalized medicine applications: 1. Patient- customized solid dose medicines, and 2. Patient-customized wound care device. The aim of the first application is to develop an inexpensive and accurate method to design and fabricate patient-customized tablets. Particularly this paper focuses on fabricating and dose controlling of patient-customized extended release prednisolone-poly(vinyle alcohole) PVA. Dry-Blending, Wet Granulation, Extrusion, Spherionization, Hot melt extrusion (HME) was adopted to produce drug loaded prednisolone-PVA filaments …


Balancing Trade-Offs In One-Stage Production With Processing Time Uncertainty, Jingjing You Jan 2021

Balancing Trade-Offs In One-Stage Production With Processing Time Uncertainty, Jingjing You

Theses and Dissertations--Mechanical Engineering

Stochastic production scheduling faces three challenges, first the inconsistencies among key performance indicators (KPIs), second the trade-offs between the expected return and the risk for a portfolio of KPIs, and third the uncertainty in processing times. Based on two inconsistent KPIs of total completion time (TCT) and variance of completion times (VCT), we propose our trade-off balancing (ToB) heuristic for one-stage production scheduling. Through comprehensive case studies, we show that our ToB heuristic with preference =0.0:0.1:1.0 efficiently and effectively addresses the three challenges. Moreover, our trade-off balancing scheme can be generalized to balance a number of …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …