Open Access. Powered by Scholars. Published by Universities.®

Manufacturing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Manufacturing

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv Jan 2022

Effects Of Titanium And Cerium Addition On Grain Size And Mechanical Properties Of Ductile Iron Castings, Shelton F. Fowler Iv

Electronic Theses and Dissertations

According to the Hall-Petch equation, the refinement of grains in metals increases the yield strength of the material. Austenite grain size influences the fineness of microstructural constituents in the ferrous alloys. It is well studied that cerium and titanium refine the austenite in steels and some gray irons, but no studies have been done to systematically explore the effects of cerium and titanium additions on austenite in ductile iron. This study sought to determine the effects of selected levels of these elements on the grain size within ductile iron. A hypoeutectic iron was chosen for testing as the proeutectic phase …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …


Reclamation Of Fused Silica From Investment Shells Used For Casting Steel, Samuel L. Holt Jan 2021

Reclamation Of Fused Silica From Investment Shells Used For Casting Steel, Samuel L. Holt

Electronic Theses and Dissertations

Fused silica is widely used for investment casting shell molds. Fused silica shells are discarded after being used for casting one time. This is due to the transformation of fused silica to beta cristobalite above 1652℉ (900℃). To reduce cost and waste of investment casting foundries, this study is exploring a method to inhibit transformation of fused silica and reclaim it from high temperature investment casting shells. This research has employed firing to minimalize fused silica transformation to cristobalite. The phase transformation is minimalized due to sintering and coarsening of the particles during firing. Coarsening reduces surface area to volume …


The Development Of A Holistic Quality Score Using In-Situ Monitoring Of Laser Powder Bed Fusion, Ryan Daigneault Jan 2021

The Development Of A Holistic Quality Score Using In-Situ Monitoring Of Laser Powder Bed Fusion, Ryan Daigneault

Electronic Theses and Dissertations

Additive manufacturing processes allow for a great degree of flexibility in terms of part production. The process is autonomous once the part has started printing in that the operator generally does not need to intervene until the part is finished. One issue that this introduces, however, is an inability to determine part quality during the printing process. Once a part has started printing, the operator must either wait until the part is finished or regularly check on the part during the print to determine the part quality. Using data gathered from multiple sensors, a quality score can be used to …


Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai Jan 2021

Mechanical Properties Of Nanomodified Hybrid Gfrp Composite Materials, Micah Rop Kimutai

Electronic Theses and Dissertations

The mechanical behavior of the nanomodified hybrid epoxy matrix was investigated in glass fiber reinforced plastics (GFRP). In this study, five nanocomposites enriched with as received halloysite, nanomer I.28E, HNT-APTES, and the hybrid combinations of the two HNTs with the nanomer I.28E were successfully fabricated. To evaluate the effects and morphological characteristics of the individual fillers and the hybrid configurations on the epoxy resin matrix, TGA, DSC, and DMA were analyzed. To understand the effect of the five configurations on the neat GFRP laminate, mode I interlaminar fracture toughness, tensile, and vibration properties were investigated. Electron microscopy testing techniques were …


Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv Nov 2020

Study On The Viability Of Preparing Plaster Molds For Rapid Prototyping Of Complex Ceramic Parts Using The Lost Pla Method, Shelton F. Fowler Iv

Honors College Theses

In the field of metal casting, cast parts often require an internal cavity to be made to meet design requirements. Frequently, these interior surfaces are not manufacturable through standard machining processes, and even when possible, they would most likely involve expensive and time-consuming operations. In order to avoid these machining costs, expendable ceramic or sand cores are manufactured and placed into the mold to allow the direct casting of complex internal geometries. This research seeks to use relatively inexpensive plastic 3D printing technology and the lost PLA casting process for the production of low-cost and rapidly producible ceramic cores. A …