Open Access. Powered by Scholars. Published by Universities.®

Applied Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Applied Mechanics

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang Dec 2023

Stress Relaxation Cracking In 347h Austenitic Steel Weldments Under Various Heat Treatments: Experiments And Modeling, Yi Yang

Doctoral Dissertations

347H austenitic stainless steel exhibits exceptional creep and corrosion resistance, rendering it an exemplary candidate for pipeline materials, particularly in mid- to high-temperature working conditions. However, due to constraints in component dimensions, welding has been chosen as the preferred method for joining pipeline systems extensively employed in nuclear power plants, fossil fuel plants, and petrochemical companies. The welding process entails the accumulation of residual stress during the cooling stage, along with the introduction of microstructure evolution. Moreover, the residual stress field and microstructure continuously evolve under service conditions, thereby intensifying the susceptibility of crack initiation and propagation. The initial residual …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Mechanics And Mechanisms Of Fracture For An Eastern Spruce Subject To Transverse Loading Using Acoustic Emission, Parinaz Belalpour Dastjerdi May 2023

Mechanics And Mechanisms Of Fracture For An Eastern Spruce Subject To Transverse Loading Using Acoustic Emission, Parinaz Belalpour Dastjerdi

Electronic Theses and Dissertations

Due to its excellent structural qualities and accessibility, wood is among the most often utilized structural materials. Despite its ubiquity, wood poses numerous challenges. It is heterogeneous and anisotropic. It has a complex hierarchical ultrastructure, and the properties can have wide variation within a species, and indeed within an individual tree. This work aims to improve our understanding of the strength and fracture behavior of spruce-pine-fir (south) (SPFs), particularly in cross-grain direction. This study’s primary goal is to examine the relationship between crack propagation and cross grain morphology under the following loading configurations: compact tension, compression, and rolling shear. The …


Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman May 2023

Molecular Dynamics Simulation On Molybdenum Disulfide: Thermal-Mechanical Properties And Phase Transitions Under External Loading, Mahabubur Rahman

All Dissertations

Due to their remarkable properties, transition metal dichalcogenides (TMDs) have received much scientific interest throughout the past decade. Two layers of chalcogen atoms (S, Se, Te) sandwich a layer of transition metal atoms (Mo, W, Ta) to form the three-atom thick unit cell in TMDs. The interaction between TMD "single layers" is mediated by neighboring chalcogen planes and bonded by Van der Waals forces. Due to this weak out-of-plane interaction, bulk samples can be thinned down to a single layer by exfoliation. Among the TMDs, Molybdenum Disulfide (MoS2) shows promise in the field of electronics, optics, and sensing …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Dome Tester, Clark Bates, Nikolas M. Kulin Jan 2023

Dome Tester, Clark Bates, Nikolas M. Kulin

Williams Honors College, Honors Research Projects

We are reconfiguring and modifying the previously built dome tester to be more user friendly and mechanically applicable. This has a long-term goal of being a usable teaching tool for manufacturing education within the college of engineering and polymer sciences. The dome tester pushes a metal dome into a clamped sheet of metal to test its forming limits and where necking occurs. We have implemented a better method of viewing the sheet sample as it is being deformed, and improved measuring methods for the distance a sample is deformed. By introducing these changes in conjunction with improved documentation of the …