Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Materials Science and Engineering

Freeze-Drying Silica Based Aerogels Using Cryoprotectants And Eutectic Solvent Mixtures, Alyssa R. Bass, Shane Peng, Jeffrey Youngblood Aug 2015

Freeze-Drying Silica Based Aerogels Using Cryoprotectants And Eutectic Solvent Mixtures, Alyssa R. Bass, Shane Peng, Jeffrey Youngblood

The Summer Undergraduate Research Fellowship (SURF) Symposium

Silica based aerogels have unique properties, including good thermal insulation and convective inhibition. A sol-gel process can be used to produce semi-opaque, monolithic gels, which can then be dried to produce aerogels. Multiple drying methods are available industrially, however, these methods require high temperatures and pressures, specialized equipment, and are time consuming. This project aims to experimentally study the possibility of a new method for drying wet gels through a freeze-drying process, with the use of cryoprotectants, eutectics, and polymers to inhibit and control ice formation and growth during drying. Silica wet gels were produced using tetraethylorthosilicate (TEOS), ethanol, water, …


Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu Jul 2015

Fundamental Problems In Porous Materials: Experiments & Computer Simulation, Zhanping Xu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 …