Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Other Materials Science and Engineering

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang Oct 2016

Modelling And Simulation Of The Flexoelectric Effect On A Cantilevered Piezoelectric Nanoplate, Xining Wang

Electronic Thesis and Dissertation Repository

Piezoelectric nanomaterials have attracted increasing attentions due to their distinct electromechanical features, especially the size-dependent properties, which differ greatly from their bulk counterparts.

Due to the large strain gradients presented in nanostructures, the flexoelectricity is believed to be responsible for such size-dependent properties. In this thesis, based on the Kirchhoff plate model and the extended linear piezoelectric theory, a modified continuum mechanics based model is developed to study the size-dependent flexoelectric effect upon the static bending behaviors of a cantilevered piezoelectric nanoplate (PNP). Finite difference method (DFM) is employed to obtain the approximate numerical solutions.

The numerical results indicate that …


Nanostructured Air Electrodes And Electrochemical Reaction Mechanism Studies For Sodium-Oxygen Batteries, Hossein Yadegari Sep 2016

Nanostructured Air Electrodes And Electrochemical Reaction Mechanism Studies For Sodium-Oxygen Batteries, Hossein Yadegari

Electronic Thesis and Dissertation Repository

Alkali metal-O2 batteries, i.e. Li- and Na-O2, are considered as the next generation of energy saving technologies with potential application in electric transportation. The high theoretical energy density in these cells is related to the use of high energy alkali metals as negative and oxygen as the positive electrode materials. The performance of alkali metal-O2 cells is highly dependent on the positive electrode material, where oxygen reduction and evolution reactions take place. Besides, the primary products of oxygen reduction reaction in these cells are typically metal oxides, which are insoluble in nonaqueous electrolytes, resulting in accumulation …


Silicon Anode Materials For Next Generation Lithium-Ion Batteries, Qizheng Li Jul 2016

Silicon Anode Materials For Next Generation Lithium-Ion Batteries, Qizheng Li

Electronic Thesis and Dissertation Repository

Lithium Ion Batteries (LIBs) are a promising green energy storage system with application toward portable electronic devices, electronic vehicles (EVs) and smart grid energy storage. High energy density is one of the most important advantages for LIB, however, improvements toward performance measures, such as energy density, power and rate capability, cycling life, safety and cost, need to meet the different requirements for various applications. It is well known that battery performance is highly dependent on the type of electrode material that is employed. Currently most LIBs are predominantly fabricated using graphite as an anode material. Therefore, finding a qualified candidate …


Application Of Molecular Layer Deposition For Graphite Anodes In Lithium-Ion Batteries And Porous Thin-Film Materials, Craig L. Langford Jul 2016

Application Of Molecular Layer Deposition For Graphite Anodes In Lithium-Ion Batteries And Porous Thin-Film Materials, Craig L. Langford

Electronic Thesis and Dissertation Repository

With climate change occurring because of greenhouse gas emissions, the demand for emission free transportation has led to the development of electric vehicles. Improving the batteries’ cycling stability, capacity and safety have been the leading challenges to compete with gasoline and diesel engines. With advances in thin-film deposition techniques via atomic and molecular layer deposition, ultrathin films can be deposited to control the surface chemistry of the battery’s active materials. This thesis aims to understand two main aspects of molecular layer deposition. First, how it can influence solid electrolyte interface formation on the graphite surface during cycling in a lithium-ion …


Surface Modification Of Electrode Materials For Lithium-Ion Batteries, Biwei Xiao Jan 2016

Surface Modification Of Electrode Materials For Lithium-Ion Batteries, Biwei Xiao

Electronic Thesis and Dissertation Repository

The development of lithium-ion batteries (LIBs) has been hampered by the intrinsic limitations of the electrode materials. High-performance LIBs demand electrode materials with fast lithium/electron diffusion rate, stable surface chemistry and high specific capacity. Surface modification by atomic layer deposition (ALD) is an essential method to optimize the performance of the electrode materials. The research in this thesis aims at achieving high-performance LIBs via surface modification and understanding the mechanisms via synchrotron radiation.

Firstly, by applying ALD FePO4 on LiNi0.5Mn1.5O4 (LNMO), we successfully alleviated the electrolyte decomposition under high voltage by using the electrochemically …


Application Of Treated Oil Sands Drill Cuttings Waste In Micropiles Construction, Moustafa Ahmed Raafat Mohamed Aboutabikh Jan 2016

Application Of Treated Oil Sands Drill Cuttings Waste In Micropiles Construction, Moustafa Ahmed Raafat Mohamed Aboutabikh

Electronic Thesis and Dissertation Repository

A micropile is constructed by drilling a hole, placing a steel reinforcing element, grouting it using neat cement. However, cement production consumes energy and generates carbon dioxide. Implementing waste materials in construction applications represents a sustainable solution for many waste management problems. On the other hand, oil sands drill cuttings waste represents one of the most difficult challenges for the oil sands mining sector. Reducing the amount oil sands drill cutting waste sent to landfill offers one of the best solutions for waste management. This thesis presents an innovative solution for application of treated oil sands waste (TOSW) in grout …