Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Other Materials Science and Engineering

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers Dec 2016

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau Aug 2016

Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau

Boise State University Theses and Dissertations

Thermoelectric half-Heusler compounds have potential to convert the heat wasted from industrial and transportation processes to useful electricity. Among the highest performing half-Heusler compounds are nano-structured bulk materials which have been arc-melted, pulverized into a nano-powder, and sintered by DC-hot press. High performing n- and p-type half-Heusler compounds with nominal composition of Hf0.25Zr0.75NiSn0.99Sb0.01 and Nb0.75Ti0.25FeSb, respectively, have been provided to us in both dense and powder form by our collaborators at the University of Houston. We consolidate these powders by SPS, refine these powders to improve both particle size …


Manipulation Of Surface Plasmon Resonance In Metal And Alloy Thin Films Using Dielectric Media, Benjamin Dubray Hall May 2016

Manipulation Of Surface Plasmon Resonance In Metal And Alloy Thin Films Using Dielectric Media, Benjamin Dubray Hall

Graduate Theses - Physics and Optical Engineering

Surface plasmon polaritons are coherent electron oscillations that propagate along an interface between a Drude metal and a dielectric medium. The excitation of polaritons is highly dependent on the dielectric properties of the metal, the thickness of the metal, and the optical properties of the dielectric material. First, plasmonic activity is assessed for several thicknesses of silver and nickel chromium under He-Ne incidence. Relationships between film thickness and metal dielectric function are explored in both cases. To manipulate the plasmonic activity at the silver surfaces, two methods are explored. Silver oxide was grown on the surface of the silver films, …


Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang Jan 2016

Improving The Capacity, Durability And Stability Of Lithium-Ion Batteries By Interphase Engineering, Qinglin Zhang

Theses and Dissertations--Chemical and Materials Engineering

This dissertation is focus on the study of solid-electrolyte interphases (SEIs) on advanced lithium ion battery (LIB) anodes. The purposes of this dissertation are to a) develop a methodology to study the properties of SEIs; and b) provide guidelines for designing engineered SEIs. The general knowledge gained through this research will be beneficial for the entire battery research community.


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …