Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

PDF

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 12 of 12

Full-Text Articles in Other Materials Science and Engineering

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Nanostructured Air Electrodes And Electrochemical Reaction Mechanism Studies For Sodium-Oxygen Batteries, Hossein Yadegari Sep 2016

Nanostructured Air Electrodes And Electrochemical Reaction Mechanism Studies For Sodium-Oxygen Batteries, Hossein Yadegari

Electronic Thesis and Dissertation Repository

Alkali metal-O2 batteries, i.e. Li- and Na-O2, are considered as the next generation of energy saving technologies with potential application in electric transportation. The high theoretical energy density in these cells is related to the use of high energy alkali metals as negative and oxygen as the positive electrode materials. The performance of alkali metal-O2 cells is highly dependent on the positive electrode material, where oxygen reduction and evolution reactions take place. Besides, the primary products of oxygen reduction reaction in these cells are typically metal oxides, which are insoluble in nonaqueous electrolytes, resulting in accumulation …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau Aug 2016

Thermoelectric Half-Heuslers: Synthesis, Processing, And Performance, Joseph Robert Croteau

Boise State University Theses and Dissertations

Thermoelectric half-Heusler compounds have potential to convert the heat wasted from industrial and transportation processes to useful electricity. Among the highest performing half-Heusler compounds are nano-structured bulk materials which have been arc-melted, pulverized into a nano-powder, and sintered by DC-hot press. High performing n- and p-type half-Heusler compounds with nominal composition of Hf0.25Zr0.75NiSn0.99Sb0.01 and Nb0.75Ti0.25FeSb, respectively, have been provided to us in both dense and powder form by our collaborators at the University of Houston. We consolidate these powders by SPS, refine these powders to improve both particle size …


Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu Jun 2016

Metals Additive Manufacturing Powder Aging Characterization, Thomas Russell Lovejoy, Nicholas Karl Muetterties, David Takeo Otsu

Mechanical Engineering

The metallic additive manufacturing process known as selective laser melting requires highly spherical, normally distributed powder with diameters in the range of 10 to 50 microns. Previous observations have shown a degradation in powder quality over time, resulting in unwanted characteristics in the final printed parts. 21-6-9 stainless steel powder was used to fabricate test parts, with leftover powder recycled back into the machine. Powder samples and test specimens were characterized to observe changes across build cycles. Few changes were observed in the physical and mechanical properties of the specimens, however, there were indications of chemical changes across cycles. Potential …


Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha May 2016

Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha

FIU Electronic Theses and Dissertations

AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties.

In …


Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett May 2016

Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett

Doctoral Dissertations

This dissertation explores the fluid dynamics of nano and microscale liquid metal filaments, with an emphasis on experimentally investigating the influences and causes of filament breakup and metallic nanostructure formation. Understanding and manipulating the liquid state properties of materials, especially metals, have the potential to advance the development of future technology, particularly nanoscale technology. The combination of top-down nanofabrication techniques with bottom-up, intrinsic self-assembly mechanisms are a powerful fusion, because it permits new and unusual nanostructures to be created, whilst revealing interesting nanoscale physics.

In fluid dynamics, wetting and dewetting is the spontaneous natural process that occurs when a liquid …


Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan Jan 2016

Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan

Dissertations, Master's Theses and Master's Reports

Alpha (α-) MnO2 is a well know transitional metal oxide possessing one dimensional 2×2 (4.6 × 4.6 Å2) tunnels for accommodation of various ions. Such a characteristic tunneled structure has enabled the wide applications of α-MnO2 in the fields of ion exchange, molecular sieves, biosensor, catalysis and energy storage. This PhD dissertation focuses on the dynamic study of ion transport functionality of α-MnO2 at atomic level using an aberration corrected scanning transmission electron microscopy equipped with a special holder with a scanning tunneling microscopy probe.

The wide application of in situ TEM studying the dynamic …


Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister Jan 2016

Photovoltaics: An Investigation Into The Origins Of Efficiency On All Scales, Jeremy Alexander Bannister

Senior Projects Spring 2016

This project is comprised of a set of parallel investigations, which share the common mo- tivation of increasing the efficiency of photovoltaics. First, the reader is introduced to core concepts of photovoltaic energy conversion via a semi-classical description of the phys- ical system. Second, a key player in photovoltaic efficiency calculations, the exciton, is discussed in greater quantum mechanical detail. The reader will be taken through a nu- merical derivation of the low-energy exciton states in various geometries, including a line segment, a circle and a sphere. These numerical calculations are done using Mathematica, a computer program which, due to …


Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson Jan 2016

Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson

Articles

The residential sector represents 27% of primary energy consumption in Ireland. This paper examines the case study of the Irish government’s national grant scheme to encourage energy efficiency retrofit in private housing. That is the Home Energy Saving (HES) Scheme, later rebranded the Better Energy: Homes (BEH) Scheme. The methodology involved monitoring several homes immediately before and after retrofit alongside discussions with occupants. The examination focused on specific measures commonly introduced through the HES/BEH programme − cavity and external wall insulation. It has been found that a significant decrease in heat loss through the walls was measured in all cases. …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …