Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Other Materials Science and Engineering

Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy May 2023

Effective Nanomembranes From Chitosan/Pva Blend Decorated Graphene Oxide With Gum Rosin And Silver Nanoparticles For Removal Of Heavy Metals And Microbes From Water Resources, Mohamed Morsy

Nanotechnology Research Centre

No abstract provided.


Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko May 2021

Voltage-Controlled Magnetic Anisotropy In Antiferromagnetic Mgo-Capped Mnpt Films, P. H. Chang, Wuzhang Fang, T. Ozaki, Kirill Belashchenko

Kirill Belashchenko Publications

The magnetic anisotropy in MgO-capped MnPt films and its voltage control are studied using first-principles calculations. Sharp variation of the magnetic anisotropy with film thickness, especially in the Pt-terminated film, suggests that it may be widely tuned by adjusting the film thickness. In thick films the linear voltage control coefficient is as large as 1.5 and -0.6 pJ/Vm for Pt-terminated and Mn-terminated interfaces, respectively. The combination of a widely tunable magnetic anisotropy energy and a large voltage-control coefficient suggest that MgO-capped MnPt films can serve as a versatile platform for magnetic memory and antiferromagnonic applications.


Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès Dec 2020

Ultrafast Spin-Currents And Charge Conversion At 3d-5d Interfaces Probed By Time-Domain Terahertz Spectroscopy, T. H. Dang, J. Hawecker, E. Rongione, G. Baez Flores, D. Q. To, J. C. Rojas-Sanchez, H. Nong, J. Mangeney, J. Tignon, F. Godel, S. Collin, P. Seneor, M. Bibes, A. Fert, M. Anane, J. M. George, L. Vila, M. Cosset-Cheneau, D. Dolfi, R. Lebrun, P. Bortolotti, Kirill Belashchenko, S. Dhillon, H. Jaffrès

Kirill Belashchenko Publications

Spintronic structures are extensively investigated for their spin-orbit torque properties, required for magnetic commutation functionalities. Current progress in these materials is dependent on the interface engineering for the optimization of spin transmission. Here, we advance the analysis of ultrafast spin-charge conversion phenomena at ferromagnetic-Transition metal interfaces due to their inverse spin-Hall effect properties. In particular, the intrinsic inverse spin-Hall effect of Pt-based systems and extrinsic inverse spin-Hall effect of Au:W and Au:Ta in NiFe/Au:(W,Ta) bilayers are investigated. The spin-charge conversion is probed by complementary techniques-ultrafast THz time-domain spectroscopy in the dynamic regime for THz pulse emission and ferromagnetic resonance spin-pumping …


Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić Nov 2020

Proximity-Induced Magnetization In Graphene: Towards Efficient Spin Gating, Mihovil Bosnar, Ivor Lončarić, P. Lazić, Kirill Belashchenko, Igor Žutić

Kirill Belashchenko Publications

Gate-tunable spin-dependent properties could be induced in graphene at room temperature through the magnetic proximity effect by placing it in contact with a metallic ferromagnet. Because strong chemical bonding with the metallic substrate makes gating ineffective, an intervening passivation layer is needed. Previously considered passivation layers result in a large shift of the Dirac point away from the Fermi level, so that unrealistically large gate fields are required to tune the spin polarization in graphene (Gr). We show that a monolayer of Au or Pt used as the passivation layer between Co and graphene brings the Dirac point closer to …


Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller Nov 2020

Detection Of Uncompensated Magnetization At The Interface Of An Epitaxial Antiferromagnetic Insulator, Pavel N. Lapa, Min Han Lee, Igor V. Roshchin, Kirill Belashchenko, Ivan K. Schuller

Kirill Belashchenko Publications

We have probed directly the temperature and magnetic field dependence of pinned uncompensated magnetization at the interface of antiferromagnetic FeF2 with Cu, using FeF2-Cu-Co spin valves. Electrons polarized by the Co layer are scattered by the pinned uncompensated moments at the FeF2-Cu interface giving rise to giant magnetoresistance. We determined the direction and magnitude of the pinned uncompensated magnetization at different magnetic fields and temperatures using the angular dependencies of resistance. The strong FeF2 anisotropy pins the uncompensated magnetization along the easy axis independent of the cooling field orientation. Most interestingly, magnetic fields as …


Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour Nov 2020

Reinvestigation Of The Intrinsic Magnetic Properties Of (Fe1-Xcox)2b Alloys And Crystallization Behavior Of Ribbons, Tej Nath Lamichhane, Olena Palasyuk, Vladimir P. Antropov, Ivan A. Zhuravlev, Kirill Belashchenko, Ikenna C. Nlebedim, Kevin W. Dennis, Anton Jesche, Matthew J. Kramer, Sergey L. Bud'ko, R. William Mccallum, Paul C. Canfield, Valentin Taufour

Kirill Belashchenko Publications

New determination of the magnetic anisotropy from single crystals of (Fe1-xCox)2B alloys are presented. The anomalous temperature dependence of the anisotropy constant is discussed using the standard Callen-Callen theory, which is shown to be insufficient to explain the experimental results. A more material specific study using first-principles calculations with disordered moments approach gives a much more consistent interpretation of the experimental data. Since the intrinsic properties of the alloys with x=0.3-0.35 are promising for permanent magnets applications, initial investigation of the extrinsic properties are described, in particular the crystallization of melt spun ribbons with Cu, Al, …


Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde Apr 2020

Questaal: A Package Of Electronic Structure Methods Based On The Linear Muffin-Tin Orbital Technique, Dimitar Pashov, Swagata Acharya, Walter R.L. Lambrecht, Jerome Jackson, Kirill Belashchenko, Athanasios Chantis, Francois Jamet, Mark Van Schilfgaarde

Kirill Belashchenko Publications

This paper summarises the theory and functionality behind Questaal, an open-source suite of codes for calculating the electronic structure and related properties of materials from first principles. The formalism of the linearised muffin-tin orbital (LMTO) method is revisited in detail and developed further by the introduction of short-ranged tight-binding basis functions for full-potential calculations. The LMTO method is presented in both Green's function and wave function formulations for bulk and layered systems. The suite's full-potential LMTO code uses a sophisticated basis and augmentation method that allows an efficient and precise solution to the band problem at different levels of theory, …


Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko Feb 2020

Effects Of Intrinsic Defects And Alloying With Fe On The Half-Metallicity Of Co2Mnsi, G. G. Baez Flores, Ivan A. Zhuravlev, Kirill Belashchenko

Kirill Belashchenko Publications

The electronic structure and half-metallic gap of Co2MnSi in the presence of crystallographic defects, partial Fe substitution for Mn, and thermal spin fluctuations are studied using the coherent potential approximation and the disordered local moment method. In the presence of 5% Co or Mn vacancies the Fermi level shifts down to the minority-spin valence-band maximum. In contrast to NiMnSb, both types of Mn antisite defects in Co2MnSi are strongly exchange coupled to the host magnetization, and thermal spin fluctuations do not strongly affect the half-metallic gap. Partial substitution of Mn by Fe results in considerable changes in the Bloch spectral …


Why The Crackling Deformations Of Single Crystals, Metallic Glasses, Rock, Granular Materials, And The Earth’S Crust Are So Surprisingly Similar, Karin A. Dahmen, Jonathan T. Uhl, Wendelin J. Wright Nov 2019

Why The Crackling Deformations Of Single Crystals, Metallic Glasses, Rock, Granular Materials, And The Earth’S Crust Are So Surprisingly Similar, Karin A. Dahmen, Jonathan T. Uhl, Wendelin J. Wright

Faculty Journal Articles

Recent experiments show that the deformation properties of a wide range of solid materials are surprisingly similar. When slowly pushed, they deform via intermittent slips, similar to earthquakes. The statistics of these slips agree across vastly different structures and scales. A simple analytical model explains why this is the case. The model also predicts which statistical quantities are independent of the microscopic details (i.e., they are "universal"), and which ones are not. The model provides physical intuition for the deformation mechanism and new ways to organize experimental data. It also shows how to transfer results from one scale to another. …


Proximitized Materials, Igor Žutić, Alex Matos-Abiague, Benedikt Scharf, Hanan Dery, Kirill Belashchenko Jan 2019

Proximitized Materials, Igor Žutić, Alex Matos-Abiague, Benedikt Scharf, Hanan Dery, Kirill Belashchenko

Kirill Belashchenko Publications

Advances in scaling down heterostructures and having an improved interface quality together with atomically thin two-dimensional materials suggest a novel approach to systematically design materials. A given material can be transformed through proximity effects whereby it acquires properties of its neighbors, for example, becoming superconducting, magnetic, topologically nontrivial, or with an enhanced spin–orbit coupling. Such proximity effects not only complement the conventional methods of designing materials by doping or functionalization but also can overcome their various limitations. In proximitized materials, it is possible to realize properties that are not present in any constituent region of the considered heterostructure. While the …


Magnetoelectric Memory Cells With Domain-Wall-Mediated Switching, Kirill Belashchenko, Oleg Tchernyshyov, Alexey Kovalev, Dmitri Nikonov Oct 2018

Magnetoelectric Memory Cells With Domain-Wall-Mediated Switching, Kirill Belashchenko, Oleg Tchernyshyov, Alexey Kovalev, Dmitri Nikonov

Kirill Belashchenko Publications

A magnetoelectric memory cell with domain - wall - mediated switching is implemented using a split gate architecture . The split gate architecture allows a domain wall to be trapped within a magnetoelectric antiferromagnetic ( MEAF ) active layer . An extension of this architecture applies to multiple gate linear arrays that can offer advantages in memory density , programmability , and logic functionality . Applying a small anisotropic in - plane shear strain to the MEAF can block domain wall precession to improve reliability and speed of switching


Temperature Dependent Surface Reconstruction Of Freely Suspended Films Of 4-N-Heptyloxybenzylidene-4-N-Heptylaniline, Daniel E. Martinez Zambrano Jun 2015

Temperature Dependent Surface Reconstruction Of Freely Suspended Films Of 4-N-Heptyloxybenzylidene-4-N-Heptylaniline, Daniel E. Martinez Zambrano

Lawrence University Honors Projects

Surfaces of freely suspended thick films of 4-n-heptyloxybenzylidene-4-n-heptylaniline (7O.7) in the crystalline-B phase have been imaged using non-contact mode atomic force microscopy. Steps are observed on the surface of the film with a height of 3.0 +/- 0.1 nm corresponding to the upright molecular length of 7O.7. In addition, we find that the step width varies with temperature between 56 and 59 degrees C. The steps are many times wider than the molecular length, suggesting that the steps are not on the surface but instead originate from edge dislocations in the interior. Using a strain model for liquid crystalline layers …


Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko Apr 2004

Anisotropy Of Exchange Stiffness And Its Effect On The Properties Of Magnets, K. D. Belashchenko

Kirill Belashchenko Publications

Using the spin-spiral formulation of the tight-binding linear muffin-tin orbital method, the principal components of the exchange stiffness tensor are calculated for typical hard magnets including tetragonal CoPt-type and hexagonal YCo5 alloys. The exchange stiffness is strongly anisotropic in all studied alloys. This anisotropy makes the domain wall surface tension anisotropic. Competition between this anisotropic surface tension and magnetostatic energy controls the formation and dynamics of nanoscale domain structures in hard magnets. Anisotropic domain wall bending is described in detail from the general point of view and with application to cellular Sm–Co magnets. It is shown that the repulsive …