Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Other Materials Science and Engineering

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen Jun 2021

Experimental Investigation Of The Performance Of A Hybrid Self-Healing System In Porous Asphalt Under Fatigue Loadings, Shi Xu, Liu Xueyan, Amir Tabakovic, Erik Schlangen

Articles

Self-healing asphalt, which is designed to achieve autonomic damage repair in asphalt pavement, offers a great life-extension prospect and therefore not only reduces pavement maintenance costs but also saves energy and reduces CO2 emissions. The combined asphalt self-healing system, incorporating both encapsulated rejuvenator and induction heating, can heal cracks with melted binder and aged binder rejuvenation, and the synergistic effect of the two technologies shows significant advantages in healing efficiency over the single self-healing method. This study explores the fatigue life extension prospect of the combined healing system in porous asphalt. To this aim, porous asphalt (PA) test specimens with …


Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic Dec 2020

Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic

Articles

The global road network spans 16.3 million km [1], of which 5 million km is in the EU. These road networks fulfil major economic and social goals by facilitating the movement of goods and people throughout the EU, and are therefore of the utmost importance to the economic and social life of the EU [2]. National governments invest heavily in their road networks, e.g., in 2014, EUR 53.33 billion was invested in the development and maintenance of the EU road network [3]. Each year, the world produces 1.6 trillion tonnes of asphalt [4], of which 218 million tonnes is produced …


Biopolymer-Stabilized Earth Materials For Resilient And Adaptable Infrastructures, Sherif Abdelaziz, Dilip Gersappe, Dilip Rafailovich Sep 2019

Biopolymer-Stabilized Earth Materials For Resilient And Adaptable Infrastructures, Sherif Abdelaziz, Dilip Gersappe, Dilip Rafailovich

Department of Civil Engineering Faculty Publications

Earth dams and levees are constructed and retrofitted nowadays using the same materials that were used in the past, clays and sands. Despite the current advances in engineering, designing and constructing these critical infrastructure, earthen dams and levees continue to suffer from the same challenges over the years. These challenges include internal and surface erosions, loss of stability due to moisture migration, and inabilities to self-heal potential failure points. This project focuses on the use of biopolymers as additives to strengthen earthen dams and levees targeting an overall increase in their resilience.

Explicitly, the report for Milestone 3 presented the …


Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das Sep 2019

Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das

Publications

Reflective cracking is considered one of the most important issues that causes premature deterioration of composite pavements. Many types of mitigation methods have been studied in the past. However, they are either not effective in delaying the reflective cracking, or they only extend the service life by a few years. To address this critical issue and significantly extend the service life of the composite pavement, in this research, a ductile interlayer made of engineered cementitious composites (ECC) was proposed. It was hypothesized that by adding a thin layer of highly ductile ECC material between the existing pavement and overlay, reflective …


Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno Aug 2019

Optimizing The Valorization Of Industrial By-Products For The Induction Healing Of Asphalt Mixtures, Amir Tabakovic, Marta Vila-Cortavitarte, Daniel Jato-Espino, Daniel Castro-Fresno

Articles

Self-healing within asphalt pavements is the process whereby road cracks can be repaired automatically when thermal and mechanical conditions are met. To accelerate and improve this healing process, metal particles are added to asphalt mixtures. However, thisapproach is costly both in economic and environmental terms due to the use of virgin metallic particles. So, even though the self-healing of asphalt mixtures has been widely addressed in experimental terms over the years, there is a lack of research aimed at modelling this phenomenon, especially with the purpose of optimizing the use of metal particles through the valorization of industrial by-products. As …


Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer Aug 2019

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models are useful to predict, understand and describe the behaviour of different cementitious-based systems. They are indispensable for undertaking long-term performance and service life predictions for existing and new products for generating quantitative data in the move towards more sustainable cements while optimising natural resources. One such application is the development of cement-based thermoelectric applications.

HYDCEM is a new model to predict the phase assemblage, degree of hydration, heat release and changes in pore solution chemistry over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, is aimed at …


Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal Aug 2019

Self-Healing Concrete Using Encapsulated Bacterial Spores In A Simulated Hot Subtropical Climate, Marwa Hassan, Jose Milla, Tyson Rupnow, Ahsennur Soysal

Publications

Bacterial concrete has become one of the most promising self-healing alternatives due to its capability to seal crack widths through microbial induced calcite precipitation (MICP). In this study, two bacterial strains were embedded at varying dosages (by weight of cement) in concrete. Beam specimens were used to identify the maximum crack-sealing efficiency, while cylinder samples were used to determine their effects on the intrinsic mechanical properties, as well as its stiffness recovery over time after inducing damage. The concrete specimens were cured in wet-dry cycles to determine their feasibility in Region 6. The results showed that the specimen groups with …


Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan Aug 2019

Elimination Of Empirical, Ineffective And Expensive Pg Plus Tests To Characterize Modified Binders, Zahid Hossain, Ashraf Elsayed, Mm Tariq Morshed, Mohammad Hassan

Publications

For characterizing the polymer modified binders, different state Departments of Transportation (DOTs) use different time consuming and empirical Performance Grade (PG) Plus test methods. Furthermore, the PG Plus tests are silent when asphalt binders are modified with chemicals such as polyphosphoric acid (PPA). But, the effects of the elastomeric or plastomeric polymer are not accurately identified through these conventional tests such as Elastic Recovery (ER) and tenacity. Thus, the main research goal of this study is to recommend alternative test method(s), which can possibly be pursued by using a commonly available device, a Dynamic Shear Rheometer (DSR). Three PG binders …


Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam Aug 2019

Use Of Rice Husk Ash (Rha) In Flowable Fill Concrete Mix Material, Zahid Hossain, Kazi Tamzidul Islam

Publications

In the way of finding sustainable development, the flowable fill is a relatively new construction technology. Flowable fill is a self-compacting material, which has been developed in recent years. Flowable fill has been used for different applications such as backfilling walls, sewer trenches, bridge abutments, conduit trenches, pile excavations, and retaining walls. This study examines the potential uses of Rice Husk Ash (RHA) as a sustainable cementitious material (SCM) in the preparation of flowable fill concrete. (RHA is an agricultural by-product of the rice milling process. This study has evaluated the usage of RHA in producing low strength and self-consolidating …


Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato Aug 2019

Use Of Bagasse Ash As A Concrete Additive For Road Pavement Application, Gabriel Arce, Marwa Hassan, Maria Gutierrez, Michele Barbato

Publications

The objective of this study was to evaluate the use of sugarcane bagasse ash (SCBA) as a partial replacement of cement in concrete for road pavement application. The study explored the pozzolanic activity of SCBA produced from three different processing methodologies (i.e., raw SCBA, controlled SCBA and post-processed SCBA). The experimental results revealed that SCBA produced by the controlled burning of sugarcane bagasse fiber (SBF) at 650°C and grinding (C-650), presented the maximum pozzolanic activity. However, this SCBA production process was deemed challenging for large-scale industrial application due to low SCBA yield (i.e., 3 to 6%). On the other hand, …


The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen Feb 2019

The Influence Of Asphalt Ageing On Induction Healing Effect On Porous Asphalt Concrete, Shi Xu, Xueyan Liu, Amir Tabakovic, Erik Schlangen

Articles

Induction healing is a proven technology which is able to improve the self‐healing capacity of asphalt concrete. Healing is achieved via electromagnetic current produced by passing induction machine, where steel asphalt constituents heat up which in turn soften the bitumen in the asphalt layer, allowing it to flow and close cracks, repairing the damage. This paper reports on the study which investigated the influence of ageing on the healing capacity of Porous Asphalt (PA) concrete. Porous Asphalt concrete mix was prepared first, then subjected to an accelerated (laboratory) ageing process using a ventilated oven. In order to further evaluate the …


Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen Jan 2019

Optimization Of The Calcium Alginate Capsules For Self-Healing Asphalt, Shi Xu, Amir Tabakovic, Xueyan Liu, Damian Palin, Erik Schlangen

Articles

Featured Application: This self-healing technology for asphalt pavements has the potential to greatly disrupt asphalt production methods (which have been stable over the past 100 years).This paper presents a development process of ‘calcium-alginate microcapsules encapsulating an asphalt bitumen rejuvenator’. The encapsulated rejuvenator is released when required (on demand) which rejuvenates the aged binder. Once crack is initiated and starts propagating it encounters a microcapsule, energy at tip of the crack opens the microcapsule, releasing the rejuvenator (healing agent). The rejuvenator will infuse into the aged binder soften it, allowing to flow, two broken edges to get into a contact and …


Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao Dec 2018

Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao

Publications

This research presents a new methodology, which enables streets, roads, highways, bridges, and airfields to use an advanced fiber-reinforced concrete material, which can delay or prevent the deterioration of these transportation infrastructure when subjected to traffic and environmental loadings. The major problem of concrete is its considerable deterioration and limited service life due to its brittleness and limited durability. As a result, it requires frequent repair and eventual replacement, which consumes more natural resources. Ultra-high-performance fiber-reinforced concrete (UHP-FRC) introduces significant enhancement in the sustainability of concrete structures due to its dense microstructure and damage-tolerance characteristics. These characteristics can significantly reduce …


A Comprehensive Reliability-Based Framework For Corrosion Damage Monitoring And Repair Design Of Reinforced Concrete Structures, Homero Castaneda, Aydin Karsilaya, Ayman Okeil, Mahmoud Reda Taha Dec 2018

A Comprehensive Reliability-Based Framework For Corrosion Damage Monitoring And Repair Design Of Reinforced Concrete Structures, Homero Castaneda, Aydin Karsilaya, Ayman Okeil, Mahmoud Reda Taha

Publications

In this work, we developed a comprehensive framework for corrosion management of reinforced concrete (RC) structures. This framework includes critical steps of an effective approach to quantify the damage evolution as well as providing the timeframe for effective maintenance/repair strategies for corrosion assessment in RC structures. The framework included several activities including the use of indirect and direct inspection tools, theoretical development for damage prediction, experimental measurements and theoretical development of repair time based on reliability. The uniqueness of the framework is the integration of deterministic modeling of corrosion damage evolution by using mechanistic analysis with statistical modeling on corrosion …


Evaluation Of Comparative Damaging Effects Of Multiple Truck Axles For Flexible Pavements, Stefan Romanoschi, Athanassios Papagiannakis Dec 2018

Evaluation Of Comparative Damaging Effects Of Multiple Truck Axles For Flexible Pavements, Stefan Romanoschi, Athanassios Papagiannakis

Publications

This study aims at evaluating the effect of overlapping flexible pavement strain responses from truck axles that are not part of multiple axle configurations (i.e., tandem, triple and quad). For this purpose, a newly constructed pavement was instrumented with strain gauges installed at the bottom of the asphalt concrete base layer on US-287 south of Mansfield, TX. This pavement structure is typically used for medium- to high-volume roads in the South-Central region of the United States. The strain gauges were used to measure longitudinal and transverse strains under several passes of a test vehicle. This was a class 6 truck …


Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla Nov 2018

Self-Healing Microcapsules As Concrete Aggregates For Corrosion Inhibition In Reinforced Concrete, Homero Castaneda, Marwa Hassan, Miladin Radovic, Jose Milla

Publications

Reinforced Concrete (RC) structures are vital to the US’s civil infrastructure for their strength and versatility. Unfortunately, RC elements deteriorate rapidly when exposed to corrosive environments. One possible solution is to extend the life of RC elements and systems using microencapsulated corrosion inhibitors to reduce the rebar corrosion rate. The capsules house an anodic corrosion inhibitor agent including calcium nitrate (CN) and triethanolamine (TEA). The integration of such microencapsulated materials will enhance the durability and extend the useful life by controlling the corrosion precursors and the corrosion process during damage evolution. Therefore, this work aims to develop and characterize the …


Bridge Deck Overlays Using Ultra-High Performance Concrete, Craig Newtson, Brad Weldon Oct 2018

Bridge Deck Overlays Using Ultra-High Performance Concrete, Craig Newtson, Brad Weldon

Publications

This study investigated the use of a locally produced ultra-high performance concrete (UHPC) as an alternative to typical overlay materials. Several bond strength tests including slant-shear, splitting tension, and direct tension tests were performed to assess the bond strength between UHPC and normal strength concrete (NSC) substrate with varying surface textures. Tests were also conducted to assess the early-age and longer-term shrinkage behavior and coefficient of thermal expansion of the UHPC as well as rapid chloride permeability testing. Good bond between UHPC and NSC substrate was observed even with inadequate surface texture. Combined shrinkage and thermal effects were investigated for …


Bridge Build, Andrew Little Nov 2017

Bridge Build, Andrew Little

Student Scholarship

Bridge build design that includes not only a building process, but a research paper to make the best build possible as well.


Viscoelastic Analysis And Fatigue Characterization Of Bituminous Materials In Two Length Scales Under The Influence Of Aging, Santosh Reddy Kommidi Aug 2017

Viscoelastic Analysis And Fatigue Characterization Of Bituminous Materials In Two Length Scales Under The Influence Of Aging, Santosh Reddy Kommidi

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Fatigue cracking in asphalt concrete (AC) is of immense importance to pavement design and analysis because it is one of the most important forms of distress that can lead to structural failure in pavement. Once started, these types of cracks can be combined with other environmental factors leading to detrimental effects such as faster rates of pavement deterioration and shortened pavement life and functionality.

Currently AASHTO TP101, also known as linear amplitude sweep (LAS) specification, is being widely used to evaluate the ability of an asphalt binder to resist fatigue. The LAS method, although mechanistic in its approach, has certain …


An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton Jan 2016

An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton

Conference papers

This paper presents an overview of the cement-based batteries developed in DIT for use in the cathodic protection of embedded steel in reinforced concrete undergoing chloride-induced corrosion. Cathodic protection delivers an external current (approximately 20mA per m2 of embedded steel) which effectively polarises the internal current generated during corrosion. The batteries developed in DIT comprise of a cement-based electrolyte containing different additives including sand, aggregate, salts, carbon black and plasticiser with protruding anode and cathode metal plates. These batteries produced an initial electrical output of 1.5V and 23mA through a 10 resistor as measured using data acquisition units and a …


Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson Jan 2016

Case Studies Of Cavity And External Wall Insulation Retrofitted Under The Irish Home Energy Saving Scheme: Technical Analysis And Occupant Perspectives, Aimee Byrne, Gerard Byrne, Garrett O'Donnell, Anthony Robinson

Articles

The residential sector represents 27% of primary energy consumption in Ireland. This paper examines the case study of the Irish government’s national grant scheme to encourage energy efficiency retrofit in private housing. That is the Home Energy Saving (HES) Scheme, later rebranded the Better Energy: Homes (BEH) Scheme. The methodology involved monitoring several homes immediately before and after retrofit alongside discussions with occupants. The examination focused on specific measures commonly introduced through the HES/BEH programme − cavity and external wall insulation. It has been found that a significant decrease in heat loss through the walls was measured in all cases. …


Computational Microstructure Modeling Of Asphalt Mixtures Subjected To Rate-Dependent Fracture, Francisco Aragao Jul 2011

Computational Microstructure Modeling Of Asphalt Mixtures Subjected To Rate-Dependent Fracture, Francisco Aragao

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Computational microstructure models have been actively pursued by the pavement mechanics community as a promising and advantageous alternative to limited analytical and semi-empirical modeling approaches. The primary goal of this research is to develop a computational microstructure modeling framework that will eventually allow researchers and practitioners of the pavement mechanics community to evaluate the effects of constituents and mix design characteristics (some of the key factors directly affecting the quality of the pavement structures) on the mechanical responses of asphalt mixtures. To that end, the mixtures are modeled as heterogeneous materials with inelastic mechanical behavior. To account for the complex …