Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Materials Science and Engineering

Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu Jan 2021

Molecular To Macroscopic Understanding Of Chloroaluminate Anion Intercalation In Rechargeable Aluminum-Graphite Batteries, Jeffrey Xu

Dissertations and Theses

Today’s global energy challenges pose an urgent need to electrify transportation and better store intermittent renewable energy sources (e.g., solar and wind energy). For such large-scale battery applications, aluminum batteries are a promising “beyond lithium-ion” technology due to the high volumetric capacity, earth abundance, low-cost, and inherent safety of aluminum metal. However, there are very few compatible positive electrode materials that exhibit high energy density and cycling stability, in part due to the challenges of electrochemically intercalating highly charged Al3+ cations. Recently, graphite has been demonstrated as a promising positive electrode material in non-aqueous rechargeable aluminum batteries, which store …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …