Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 84

Full-Text Articles in Other Materials Science and Engineering

Corrosion Case Study On Pipeline, Kangze Ren Oct 2023

Corrosion Case Study On Pipeline, Kangze Ren

Corrosion Research

The Kashagan pipeline leaks were likely caused by sulfur stress corrosion cracking, a combined corrosion mechanism developed by the presence of high pressure, the high level of hydrogen sulfide(the main "ingredient" of sour gas), and poor metallurgical choice. Improper welding and poor metallurgical examination were blamed for causing the leaking issue. The purpose of the current review is to raise the alarm about the inappropriate corrosion management of Kashagan oil production and its societal and environmental consequences.


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Adsorptive Properties And On-Demand Magnetic Response Of Lignin@Fe3o4 Nanoparticles At Castor Oil–Water Interfaces, Mohammad J. Hasan, Emily Westphal, Peng Chen, Abishek Saini, I-Wei Chu, Sarah J. Watzman, Esteban E. Ureña-Benavides, Erick S. Vasquez Jan 2023

Adsorptive Properties And On-Demand Magnetic Response Of Lignin@Fe3o4 Nanoparticles At Castor Oil–Water Interfaces, Mohammad J. Hasan, Emily Westphal, Peng Chen, Abishek Saini, I-Wei Chu, Sarah J. Watzman, Esteban E. Ureña-Benavides, Erick S. Vasquez

Chemical and Materials Engineering Faculty Publications

Lignin@Fe3O4 nanoparticles adsorb at oil–water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0–540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water …


Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends Containing Reactive Flame Retardants, Mustafa Mukhtar, Donald A. Klosterman Jan 2023

Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends Containing Reactive Flame Retardants, Mustafa Mukhtar, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

Cyanate ester resins are sometimes mixed with lower cost epoxy monomers to modify cost, toughness, and processing capabilities. Despite the high performance of these thermosetting polymers, flame retardancy remains an issue. This study examined blends of three different commercial cyanate ester monomers (LVT-100, LECy, and XU-71787.02) and diglycidyl ether of bisphenol A (DGEBA) at 50/50 wt% of each type. The blends were successfully reacted with two reactive flame retardants (FR): 9,10-dihydro-9-ox-9-phosphaphenanthrene-10-oxide (DOPO) and poly(m-phenylene methylphosphonate) (PMP) at phosphorus contents ranging from 0 to 3 wt%. The curing behavior of EP/CE blends was investigated using differential scanning calorimetry (DSC). It was …


Synthesis Of A Phosphorus-Based Epoxy Reactive Flame Retardant Analog To Diglycidyl Ether Of Bisphenol A (Dgeba) And Its Behavior As A Matrix In A Carbon Fiber Composite, Mustafa Mukhtar Nov 2022

Synthesis Of A Phosphorus-Based Epoxy Reactive Flame Retardant Analog To Diglycidyl Ether Of Bisphenol A (Dgeba) And Its Behavior As A Matrix In A Carbon Fiber Composite, Mustafa Mukhtar

Chemical and Materials Engineering Faculty Publications

This paper describes the synthesis of a phosphorus-based flame retardant that is a chemical analog of diglycidyl ether of bisphenol A (DGEBA), as well as its incorporation as a matrix into carbon fiber laminates. Carbon fiber composites, if used for structural applications in mass transport vehicles (aircraft, trains), will require some aspects of improved fire performance to be used safely in those applications. The first phase of work involved the development of two separate synthesis routes to produce the flame retardant monomer, referred to as Phosphorus-DGEBA or simply P-DGEBA. The second step was to determine the viability of the compound's …


Identification Of Lithocholic Acid As A Molecular Glass Host For Room-Temperature Phosphorescent Materials, John J. Flynn, Zachary M. Marsh, Douglas M. Krein, Steven M. Wolf, Joy E. Haley, Erick S. Vasquez, Thomas M. Cooper, Nicholas P. Godman, Tod A. Grusenmeyer Aug 2022

Identification Of Lithocholic Acid As A Molecular Glass Host For Room-Temperature Phosphorescent Materials, John J. Flynn, Zachary M. Marsh, Douglas M. Krein, Steven M. Wolf, Joy E. Haley, Erick S. Vasquez, Thomas M. Cooper, Nicholas P. Godman, Tod A. Grusenmeyer

Chemical and Materials Engineering Faculty Publications

Lithocholic acid was identified as a molecular glass host material for room temperature phosphorescent (RTP) chromophores. Differential scanning calorimetry (DSC) was performed on a series of structurally similar, biologically sourced molecules, including lithocholic acid, β-estradiol, cholesterol, and β-sitosterol, in an effort to identify new amorphous molecular glasses independent of plasticizing additives. DSC analysis revealed lithocholic acid and β-estradiol form stable molecular glasses post thermal processing unlike neat cholesterol and β-sitosterol. The ability of lithocholic acid and β-estradiol to stabilize high wt. % loadings of d10-pyrene and a mixture of d10-pyrene and an iridium chromophore, bis(2,4-difluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(III) (FIr6), was also investigated. …


Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends, Donald A. Klosterman May 2022

Preparation, Cure, And Characterization Of Cyanate Ester-Epoxy Blends, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

Cyanate ester resins are often blended with lower cost epoxy monomers in order to modify the cost, toughness, and processing characteristics. There are also several choices of catalysts that can be used to improve processing, namely by reducing the cure temperature. This study was undertaken to illustrate how a designed experiment approach can be used to systematically investigate a wide range of material combinations and illuminate the basic cure behavior of some simple cyanate ester – epoxy blend combinations. Two commercial cyanate ester resin products were obtained. Each was blended with a bisphenol F based epoxy resin at two different …


Entrepreneurially Minded Learning In The Unit Operations Laboratory Through Community Engagement In A Blended Teaching Environment, Erick S. Vasquez, Kelly Bohrer, Abraham Noe-Hays, Arthur Davis, Matthew Dewitt, Michael J. Elsass Nov 2021

Entrepreneurially Minded Learning In The Unit Operations Laboratory Through Community Engagement In A Blended Teaching Environment, Erick S. Vasquez, Kelly Bohrer, Abraham Noe-Hays, Arthur Davis, Matthew Dewitt, Michael J. Elsass

Chemical and Materials Engineering Faculty Publications

Online and blended learning opportunities in Chemical Engineering curriculum emerged due to COVID-19. After eight weeks of in-person Unit Operations Laboratory sessions, a remote-learning open-ended final project was assigned to student teams. The assignment involved aspects related to entrepreneurial-minded learning (EML) and community-based learning (CBL). Results show correlations between self-directed learning and the EML framework. Continuous support and involvement of a community partner correlate to students' m


Analytical Model For Electromagnetic Induction In Pulsating Ferrofluid Pipe Flows, Huiyu Wang, John G. Monroe, Swati Kumari, Serhiy O. Leontsev, Erick S. Vasquez, Scott M. Thompson, Matthew J. Berg, Dibbon Keith Walters, Keisha B. Walters Aug 2021

Analytical Model For Electromagnetic Induction In Pulsating Ferrofluid Pipe Flows, Huiyu Wang, John G. Monroe, Swati Kumari, Serhiy O. Leontsev, Erick S. Vasquez, Scott M. Thompson, Matthew J. Berg, Dibbon Keith Walters, Keisha B. Walters

Chemical and Materials Engineering Faculty Publications

No abstract provided.


Facile Fabrication And Characterization Of Kraft Lignin@Fe3o4 Nanocomposites Using Ph Driven Precipitation: Effects On Increasing Lignin Content, Frankie A. Petrie, Justin M. Gorham, Robert T. Busch, Serhiy O. Leontsev, Esteban E. Ureña-Benavides, Erick S. Vasquez Jun 2021

Facile Fabrication And Characterization Of Kraft Lignin@Fe3o4 Nanocomposites Using Ph Driven Precipitation: Effects On Increasing Lignin Content, Frankie A. Petrie, Justin M. Gorham, Robert T. Busch, Serhiy O. Leontsev, Esteban E. Ureña-Benavides, Erick S. Vasquez

Chemical and Materials Engineering Faculty Publications

This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (Fe3O4) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@Fe3O4 multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based Fe3O4 nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial Fe3O4 mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and …


Exploration Of The Sludge Biodiesel Pathway, Zachary Christman May 2021

Exploration Of The Sludge Biodiesel Pathway, Zachary Christman

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Wastewater sludge is an overlooked source of fat, oil, and grease (FOG) that could be converted into biodiesel. The United States produces about 8 million tons of sludge per year. The disposal cost for this amount of sludge is about 2 billion US dollars. The widespread availability and low cost of sludge compared to other biodiesel raw materials make it an economical choice for a renewable fuel. Using sludge as a raw material can produce 25 to 30 mg per gram of fatty acid methyl ester (FAME); the main component of biodiesel. Sludge biodiesel has the potential of transforming a …


Comparison Of Tensile Properties Of Triaxial Braided Carbon Fiber Composites Made From Vacuum Assisted Resin Transfer Molding (Vartm) And Autoclave Molding, Donald A. Klosterman, Charles Browning May 2021

Comparison Of Tensile Properties Of Triaxial Braided Carbon Fiber Composites Made From Vacuum Assisted Resin Transfer Molding (Vartm) And Autoclave Molding, Donald A. Klosterman, Charles Browning

Chemical and Materials Engineering Faculty Publications

Triaxially braided fiber composites are increasingly being used in aerospace, ballistic, and sporting good applications due to their inherent damage tolerance, torsional stability, and cost compared to woven fabrics and unidirectional preforms. There have been numerous publications over the past 15-20 years on the mechanical properties and failure mechanisms of triaxial braided composites. However, most of these have involved panels made with autoclave curing. In the present study, braided carbon fiber composites were made using autoclave curing and vacuum assisted resin transfer molding (VARTM). The goal of the study was to compare the physical and tensile properties of quasi-isotropic panels …


Detection And Aggregation Of Listeria Monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates, Robert T. Busch, Farzia Karim, Yvonne Sun, H. Christopher Fry, Yuzi Liu, Chenglong Zhao, Erick S. Vasquez Apr 2021

Detection And Aggregation Of Listeria Monocytogenes Using Polyclonal Antibody Gold-Coated Magnetic Nanoshells Surface-Enhanced Raman Spectroscopy Substrates, Robert T. Busch, Farzia Karim, Yvonne Sun, H. Christopher Fry, Yuzi Liu, Chenglong Zhao, Erick S. Vasquez

Chemical and Materials Engineering Faculty Publications

Magnetic nanoshells with tailored surface chemistry can enhance bacterial detection and separation technologies. This work demonstrated a simple technique to detect, capture, and aggregate bacteria with the aid of end-functionalized polyclonal antibody gold-coated magnetic nanoshells (pAb-Lis-AuMNs) as surface-enhanced Raman spectroscopy (SERS) probes. Listeria monocytogenes were used as the pathogenic bacteria and the pAb-Lis-AuMNs, 300 nm diameter, were used as probes allowing facile magnetic separation and aggregation. An optimized covalent bioconjugation procedure between the magnetic nanoshells and the polyclonal antibody was performed at pH six via a carbodiimide crosslinking reaction. Spectroscopic and morphological characterization techniques confirmed the fabrication of stable pAb-Lis-AuMNs. …


Fabrication And Characterization Of Electrospun Poly(Acrylonitrile-Co-Methyl Acrylate)/Lignin Nanofibers: Effects Of Lignin Type And Total Polymer Concentration, Suchitha Devadas, Saja M. Nabat Al-Ajrash, Donald A. Klosterman, Kenya A. Crosson, Garry S. Crosson, Erick S. Vasquez Mar 2021

Fabrication And Characterization Of Electrospun Poly(Acrylonitrile-Co-Methyl Acrylate)/Lignin Nanofibers: Effects Of Lignin Type And Total Polymer Concentration, Suchitha Devadas, Saja M. Nabat Al-Ajrash, Donald A. Klosterman, Kenya A. Crosson, Garry S. Crosson, Erick S. Vasquez

Chemical and Materials Engineering Faculty Publications

Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and …


Magnetically Induced Demulsification Of Water And Castor Oil Dispersions Stabilized By Fe3o4-Coated Cellulose Nanocrystals, Mohammad J. Hasan, Frankie A. Petrie, Ashley E. Johnson, Joshua Peltan, Meredith Gannon, Robert T. Busch, Serhiy O. Leontsev, Erick S. Vasquez, Esteban E. Ureña-Benavides Mar 2021

Magnetically Induced Demulsification Of Water And Castor Oil Dispersions Stabilized By Fe3o4-Coated Cellulose Nanocrystals, Mohammad J. Hasan, Frankie A. Petrie, Ashley E. Johnson, Joshua Peltan, Meredith Gannon, Robert T. Busch, Serhiy O. Leontsev, Erick S. Vasquez, Esteban E. Ureña-Benavides

Chemical and Materials Engineering Faculty Publications

Superparamagnetic iron oxide (Fe3O4) nanoparticle (NP) coated cellulose nanocrystals (CNCs) were synthesized and used to prepare emulsions with magnetically controlled stability. Magnetite NPs were deposited onto the surface of wood pulp CNCs (WCNCs) and bacterial CNCs (BCNCs) by a one-step coprecipitation method. The effect of the CNC to Fe3O4 mass ratio (1:1, 1:2, and 1:4) was varied to optimize the colloidal, magnetic and emulsifying properties of the hybrid NPs. TEM images showed that the 1:4 ratios lead to greater coverage of Fe3O4 than lower Fe3O4 loadings (1:1, and 1:2). The CNCs and Fe3O4 appeared to interact via hydrogen bonding between …


Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky Oct 2020

Resource-Saving Technologies For The Production Of Elastic Leather Materials: Collective Monograph, Olena Korotych, Anatolii Danylkovych, Serhii Bilinskyi, Serhii Bondarenko, Slava Branovitska, Vasyl Chervinskyi, Nataliia Khliebnikova, Alona Kudzieva, Viktor Lishchuk, Nataliia Lysenko, Olena Mokrousova, Nataliia Omelchenko, Vera Palamar, Yuliia Potakh, Oksana Romanyuk, Olga Sanginova, Oleksandr Zhyhotsky

Chemistry Publications and Other Works

This monograph contains a collection of recent research papers focusing on advancing existing technologies and developing new technologies to improve the environmentally friendliness and save resources during the production of elastic leather materials. The papers are organized based on the type of technological process used to preserve raw hides. A lot of attention is devoted to mathematical planning, simulations, and multicriteria optimization of the technological processes using newly developed chemical reagents. The monograph contains a complex study of physicochemical properties and characteristics of the resulting leather materials. The developed technologies were tested by the private joint-stock company Chinbar (Kyiv, Ukraine) …


Investigation Of Various Techniques For Controlled Void Formation In Fiberglass/Epoxy Composites, Donald A. Klosterman, Charles Browning, Issa Hakim, Kyle Lach Aug 2020

Investigation Of Various Techniques For Controlled Void Formation In Fiberglass/Epoxy Composites, Donald A. Klosterman, Charles Browning, Issa Hakim, Kyle Lach

Chemical and Materials Engineering Faculty Publications

The effect of porosity in composite materials has been studied for years due to its deleterious effects on mechanical properties, especially matrix dominated properties. Currently there is an increasing use of composites in infrastructure worldwide, for example bridge components, residential and building structures, marine structures such as piers and docks, and large industrial chemical tanks. Most of these applications use fiberglass composites. Unfortunately, most of the published literature has focused on carbon fiber composites, in which fiber diameter and gas-fiber interactions are different than fiberglass composites. Therefore, the present study was undertaken to revisit the effect of porosity but specifically …


Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener Apr 2020

Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener

Chemical Engineering and Materials Science Faculty Research Publications

One of the challenges for chemical processes today, from a safety and profit standpoint, is the potential that cyberattacks could be performed on components of process control systems. Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack has similarities to a nonlinear systems definition of faults, many processes have already been instrumented to handle various problematic input conditions. Also challenging is the question of how to design a system that is resilient to attacks attempting to impact the production volumes or profits of a company. In this work, we explore a process/equipment design framework for …


Responsive Economic Model Predictive Control For Next-Generation Manufacturing, Helen Durand Feb 2020

Responsive Economic Model Predictive Control For Next-Generation Manufacturing, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

There is an increasing push to make automated systems capable of carrying out tasks which humans perform, such as driving, speech recognition, and anomaly detection. Automated systems, therefore, are increasingly required to respond to unexpected conditions. Two types of unexpected conditions of relevance in the chemical process industries are anomalous conditions and the responses of operators and engineers to controller behavior. Enhancing responsiveness of an advanced control design known as economic model predictive control (EMPC) (which uses predictions of future process behavior to determine an economically optimal manner in which to operate a process) to unexpected conditions of these types …


Impact Of Team Formation Approach On Teamwork Effectiveness And Performance In An Upper-Level Undergraduate Chemical Engineering Laboratory Course, Erick S. Vasquez, Matthew J. Dewitt, Zachary J. West, Michael J. Elsass Feb 2020

Impact Of Team Formation Approach On Teamwork Effectiveness And Performance In An Upper-Level Undergraduate Chemical Engineering Laboratory Course, Erick S. Vasquez, Matthew J. Dewitt, Zachary J. West, Michael J. Elsass

Chemical and Materials Engineering Faculty Publications

This study focuses on the impact of team formation approach on teamwork effectiveness and performance spanning three years of instruction of the chemical engineering unit operations laboratory, which is an upper-level undergraduate laboratory course. Team formation approaches changed each year, and assessment tools, including peer-assessment, academic performance, and course evaluations, were employed to evaluate team performance. Approaches included three cases: instructor-selected teams based on GPA with the objective of a similar cumulative average GPA for each team, student self-selected teams, and a combination of self-selected teams with instructor-selected teams for a final experiment. For the third case, new teams were …


Organophosphorus-Hydrazides As Potential Reactive Flame Retardants For Epoxy, Alexander B. Morgan, Vladimir Benin, Donald A. Klosterman, Abdulhamid Bin Sulayman, Mustafa Mukhtar, Mary L. Galaska Jan 2020

Organophosphorus-Hydrazides As Potential Reactive Flame Retardants For Epoxy, Alexander B. Morgan, Vladimir Benin, Donald A. Klosterman, Abdulhamid Bin Sulayman, Mustafa Mukhtar, Mary L. Galaska

Chemical and Materials Engineering Faculty Publications

For structural composites used in vehicles and aircraft, flame retardant chemistries which enhance char formation and reduce heat release are preferred. Phosphorus-based and phosphorus–nitrogen flame retardants for epoxies have been well studied to date, but phosphorus hydrazides have not been studied for their flame-retardant potential in epoxy. These hydrazides offer some novel structures and they can potentially offer a combination of vapor and condensed phase flame retardant action. A series of eight compounds were systematically investigated in this study as reactive flame retardants in a bisphenol F epoxy/aliphatic amine resin system at a level of 2.5 wt% phosphorus. Results suggest …


Assessing Magnetic Iron Oxide Nanoparticles Properties Under Different Thermal Treatments, Erick S. Vasquez, Evan M. Prehn, Keisha B. Walters Dec 2019

Assessing Magnetic Iron Oxide Nanoparticles Properties Under Different Thermal Treatments, Erick S. Vasquez, Evan M. Prehn, Keisha B. Walters

Chemical and Materials Engineering Faculty Publications

Magnetic nanoparticle structures have been examined as potential carrier vehicles and substrates in a wide range of applications where they undergo mechanical, chemical and/or thermal manipulation to allow for their modification, conjugation and transport. For safe and effective use, it is imperative to not only measure the initial physicochemical and structural properties of nanomaterials, but also identify and quantify any property changes related to a loss of chemical and/or physical integrity during processing and usage conditions. In this study an assessment of iron oxide magnetic nanoparticle thermal stability using modulated differential scanning calorimetry (mDSC) and a controlled-heating system is conducted …


Optothermal Microbubble Assisted Manufacturing Of Nanogap-Rich Structures For Active Chemical Sensing, Farzia Karim, Erick S. Vasquez, Yvonne Sun, Chenglong Zhao Oct 2019

Optothermal Microbubble Assisted Manufacturing Of Nanogap-Rich Structures For Active Chemical Sensing, Farzia Karim, Erick S. Vasquez, Yvonne Sun, Chenglong Zhao

Chemical and Materials Engineering Faculty Publications

Guiding analytes to the sensing area is an indispensable step in a sensing system. Most of the sensing systems apply a passive sensing method, which waits for the analytes to diffuse towards the sensor. However, passive sensing methods limit the detection of analytes to a picomolar range on micro/nanosensors for a practical time scale. Therefore, active sensing methods need to be used to improve the detection limit in which the analytes are forced to concentrate on the sensors. In this article, we have demonstrated the manufacturing of nanogap-rich structures for active chemical sensing. Nanogap-rich structures are manufactured from metallic nanoparticles …


Optimization And Structural Stability Of Gold Nanoparticle–Antibody Bioconjugates, Robert T. Busch, Farzia Karim, John Weis, Yvonne Sun, Chenglong Zhao Sep 2019

Optimization And Structural Stability Of Gold Nanoparticle–Antibody Bioconjugates, Robert T. Busch, Farzia Karim, John Weis, Yvonne Sun, Chenglong Zhao

Chemical and Materials Engineering Faculty Publications

Gold nanoparticles (AuNPs) bound with biomolecules have emerged as suitable biosensors exploiting unique surface chemistries and optical properties. Many efforts have focused on antibody bioconjugation to AuNPs resulting in a sensitive bioconjugate to detect specific types of bacteria. Unfortunately, bacteria thrive under various harsh environments, and an understanding of bioconjugate stability is needed. Here, we show a method for optimizing Listeria monocytogenes polyclonal antibodies bioconjugation mechanisms to AuNPs via covalent binding at different pH values, from 2 to 11, and 2-(N-morpholino)ethanesulfonic acid (MES), 3-(N-morpholino)propanesulfonic acid, NaOH, HCl conditions. By fitting Lorentz curves to the amide I and II regions, we …


Computational And Experimental Approach To Understanding The Structural Interplay Of Self-Assembled End-Terminated Alkanethiolates On Gold Surfaces, Juganta K. Roy, Erick S. Vasquez, Henry P. Pinto, Swati Kumari, Keisha B. Walters, Jerzy Leszcynski Aug 2019

Computational And Experimental Approach To Understanding The Structural Interplay Of Self-Assembled End-Terminated Alkanethiolates On Gold Surfaces, Juganta K. Roy, Erick S. Vasquez, Henry P. Pinto, Swati Kumari, Keisha B. Walters, Jerzy Leszcynski

Chemical and Materials Engineering Faculty Publications

Applications of self-assembled monolayers (SAMs) on surfaces are prevalent in modern technologies and drives the need for a better understanding of the surface domain architecture of SAMs. To explore structural interaction at the interface between gold surfaces and a hydroxyl-terminated alkanethiol, 11-hydroxy-1-undecanethiol, (C11TH) we have employed a combined computational and experimental approach. Density functional theory (DFT) calculations were carried out on the thiol–gold interface using both the Perdew–Burke–Ernzerhof (PBE) and van der Waals (optB86b) density functionals. Our ab initio molecular dynamics (AIMD) simulations revealed that the interface consists of four different distinguished phases, each with different C11TH orientations. Experiments involved …


Development Of A Methodology For Characterizing Reaction Kinetics, Rheology, And In-Situ Compaction Of Polyimide Prepregs During Cure, James Raymond Magato, Donald A. Klosterman Aug 2019

Development Of A Methodology For Characterizing Reaction Kinetics, Rheology, And In-Situ Compaction Of Polyimide Prepregs During Cure, James Raymond Magato, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

PMR-type polyimide prepregs are challenging to fabricate into high quality composites due to volatiles that are generated and must be removed in situ during processing. The current work was conducted to develop accurate, reliable, and practical characterization techniques of the prepreg rheology, volatile generation, and subsequent volatile removal from the prepreg during composite fabrication. Thermal analysis was used to characterize volatile generation, reaction rates, and rheology. A novel approach was used to measure the thickness of the prepreg in situ during vacuum bag/oven processing using a high-temperature LVDT. Experimental results are presented for the commercially available RM-1100 polyimide/carbon prepreg system, …


The Effect Of Fabric Architecture On The Processing And Properties Of Composites Made By Vacuum Assisted Resin Transfer Molding, Francois Ntakobatagize, Oscar Ntakontagize, Donald A. Klosterman May 2019

The Effect Of Fabric Architecture On The Processing And Properties Of Composites Made By Vacuum Assisted Resin Transfer Molding, Francois Ntakobatagize, Oscar Ntakontagize, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

The goal of this research project was to evaluate and compare the effect of fabric architecture on the processing and properties of composites made by Vacuum Assisted Resin Transfer Molding (VARTM). The fabric architectures investigated included plain weave, satin weave, and warp-knit unidirectional. The fiber types included E-glass and standard modulus carbon fiber. Flat panels were fabricated with a lab scale VARTM process using an epoxy resin system. Fabric plies were cut to 45 cm x 30 cm (18 in. x 12 in.), and the number of plies used depended on the fiber areal weight of each fabric to produce …


Evaluating The Scalability Of The Sonication Method Of Graphene Oxide Synthesis, Evan Dexter May 2019

Evaluating The Scalability Of The Sonication Method Of Graphene Oxide Synthesis, Evan Dexter

Honors Program Projects

Graphene is a new material that was first isolated in 2004, and consists of one to a few atomic layers of carbon in a lattice sheet structure. Graphene has high tensile strength, high surface area, very low electrical resistance, and various other special properties that make it an excellent material for use in emerging technologies in the categories of electrical components, energy systems, and high strength applications. The production scale of graphene sheets and its variations is currently limited to laboratory use, with increasing research being conducted toward the development of manufacturing techniques of the material. We conducted experiments to …


Development Of A Simple Lab-Scale Vacuum Assisted Resin Transfer Molding (Vartm) Process, Donald A. Klosterman Oct 2018

Development Of A Simple Lab-Scale Vacuum Assisted Resin Transfer Molding (Vartm) Process, Donald A. Klosterman

Chemical and Materials Engineering Faculty Publications

The goal of the current study was to develop and demonstrate a simple and quick lab-scale VARTM process for the purpose of making flat panels for subsequent characterization, for example in new materials development efforts. This process was not intended to be optimized for final production, rather it served as the quickest way to make lab-scale composite panels using VARTM while maintaining all the salient features of typical VARTM processes used in larger scale manufacturing. There is a wide variety of ways to implement VARTM, as well as a diverse list of potential materials and supplies from which to choose. …


An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton Jan 2016

An Overview Of The Development Of Cement-Based Batteries For The Cathodic Protection Of Embedded Steel In Concrete, Aimee Byrne, Niall Holmes, Brian Norton

Conference papers

This paper presents an overview of the cement-based batteries developed in DIT for use in the cathodic protection of embedded steel in reinforced concrete undergoing chloride-induced corrosion. Cathodic protection delivers an external current (approximately 20mA per m2 of embedded steel) which effectively polarises the internal current generated during corrosion. The batteries developed in DIT comprise of a cement-based electrolyte containing different additives including sand, aggregate, salts, carbon black and plasticiser with protruding anode and cathode metal plates. These batteries produced an initial electrical output of 1.5V and 23mA through a 10 resistor as measured using data acquisition units and a …