Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2014

Discipline
Institution
Keyword
Publication

Articles 1 - 23 of 23

Full-Text Articles in Metallurgy

Influence Of Texture And Grain Size On The Plastic Anisotropy In A Wrought Mg Alloy: Synchrotron X-Ray Diffraction And Visco-Plastic Self-Consistent Modeling, Yi Wang Dec 2014

Influence Of Texture And Grain Size On The Plastic Anisotropy In A Wrought Mg Alloy: Synchrotron X-Ray Diffraction And Visco-Plastic Self-Consistent Modeling, Yi Wang

Doctoral Dissertations

The combined effects of texture and grain size on the yielding and hardening behavior in a hot-rolled AZ31B Mg alloy were studied by using synchrotron x-ray diffraction and visco-plastic self-consistent (VPSC) simulation methods.

First, the influence of texture on Hall-Petch relationships (namely, critical resolved shear stresses and hardening parameters) in a Mg alloy was investigated to establish a constitutive basis for the VPSC simulation.

Then, the changes in dominant deformation mechanisms (basal, prismatic, and pyramidal slip as well as extension twin) and their relative interactions were studied systematically as a function of the initial texture using a VPSC scheme. The …


Plastic Anisotropy Of Complex Crystals And Hierarchically Structured Alloys Using Micro-Mechanical Computational Analysis, Lin Li Dec 2014

Plastic Anisotropy Of Complex Crystals And Hierarchically Structured Alloys Using Micro-Mechanical Computational Analysis, Lin Li

Doctoral Dissertations

The material anisotropy is one of the most important material properties that cannot be disregarded in today’s world of materials designing and manufacturing. As new materials being developed and new material demands are introduced the inevitable focus on anisotropic materials has been brought under the spotlight. In this dissertation, several experimental and simulation project regarding material anisotropic effects on hexagonal close packed crystals such as Silicon Carbide as well and hierarchically structured solid solution ferritic based alloys. The general purpose was to demonstrate the improvement on various intended material properties using finite element method. Since indentation is a widely used …


Fatigue, Fracture, And Environmentally-Assisted Behavior Of Advanced Engineering Materials, Zhi Tang Dec 2014

Fatigue, Fracture, And Environmentally-Assisted Behavior Of Advanced Engineering Materials, Zhi Tang

Doctoral Dissertations

The objective of the present study is to provide a fundamental understanding of fatigue, fracture, and environmentally-assisted behavior of high-entropy alloys (HEAs). The work involves fatigue, fracture, and environmentally-assisted behavior of a new kind of advanced engineering materials, called HEAs. Three tasks are studied: (1) microstructures and fracture mechanisms of HEAs, (2) fatigue failure and life prediction of HEAs, and (3) corrosion and environmentally-assisted behavior of HEAs.

In the first task, microstructural stability and fracture mechanism of the AlCoCrFeNi alloy are studied and compared with thermodynamic calculations. In the second task, high-cycle fatigue-failure mechanisms of the cold-rolled Al0.5CoCrCuFeNi alloy are …


Characterization Of The Fine-Scale Weld Deposit Microstructure And Its Influence On The Elevated Temperature Properties Of 2.25cr - 1mo - 0.25v Weldments In Heavy Wall Pressure Vessels, Dewey Joshua Burgess Dec 2014

Characterization Of The Fine-Scale Weld Deposit Microstructure And Its Influence On The Elevated Temperature Properties Of 2.25cr - 1mo - 0.25v Weldments In Heavy Wall Pressure Vessels, Dewey Joshua Burgess

Doctoral Dissertations

The research herein was conducted to characterize the fine-scale microstructure of 2.25Cr‑1Mo‑0.25V (22V) submerged arc weld deposits and to study the influence of the microstructure on creep behavior and reheat cracking susceptibility. Scanning electron microscopy and transmission electron microscopy examinations concentrated on carbide morphology and evolution as a function of time and temperature, since the majority of properties that are associated with 22V weld deposits are attributable to the carbide type and location throughout the microstructure.

Five distinct carbides were observed in the range of heat treatments studied: MC, M2C, M23C6, M7C3, and M6C. It was shown that each carbide …


Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore Dec 2014

Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore

Chancellor’s Honors Program Projects

No abstract provided.


Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao Aug 2014

Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao

Masters Theses

The condition of fluid flow has been proven to have a significant influence on a wide variety of material processes. In electromagnetic levitation (EML) experiments, the internal flow is driven primarily by electromagnetic forces. In 1-g, the positioning forces are very strong and the internal flows are turbulent. To reduce the flows driven by the levitation field, experiments may be performed in reduced gravity and parabolic flights experiments have been adopted as the support in advance. Tracer particles on the surface of levitated droplets in EML experiment performed by SUPOS have been used to investigate the transition from laminar to …


Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly Aug 2014

Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly

Masters Theses

In sub-millimeter sheets of wrought H-X750 Nickel-base superalloy, aluminum-rich coatings are bonded to matrix with a vapor phase aluminization process. If an appropriate amount of aluminum is bonded to matrix with homogenization treatment, the resulting diffusion couple will diffuse into coherent (g/g’) heterogeneous phases creating matrix that is both precipitation and solid solution strengthened.

The diffusional mechanisms for solid solution mass transport involved with the growth and dispersion of bonded aluminum-rich coatings in the aluminization process only differ from the no external mass flow homogenization process with annealing treatment in that the boundary conditions are different. In each case these …


Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman Aug 2014

Atomistic Simulation And Virtual Diffraction Characterization Of Alumina Interfaces: Evaluating Structure And Stability For Predictive Physical Vapor Deposition Models, Shawn Patrick Coleman

Graduate Theses and Dissertations

The objectives of this work are to investigate the structure and energetic stability of different alumina (Al2O3) phases using atomistic simulation and virtual diffraction characterization. To meet these objectives, this research performs molecular statics and molecular dynamics simulations employing the reactive force-field (ReaxFF) potential to model bulk, interface, and surface structures in the θ-, γ-, κ-, and α-Al2O3 system. Simulations throughout this study are characterized using a new virtual diffraction algorithm, developed and implemented for this work, that creates both selected area electron diffraction (SAED) and x-ray diffraction (XRD) line profiles without assuming …


An Evaluation Of Void Formation In Ex-Service And Creep Tested Hp Alloy Tubing Used For Hydrocarbon Reforming, Zane William Fox Palmer Aug 2014

An Evaluation Of Void Formation In Ex-Service And Creep Tested Hp Alloy Tubing Used For Hydrocarbon Reforming, Zane William Fox Palmer

Masters Theses

HP alloy tubing is commonly used in petroleum reforming facilities for its high temperature strength and resistance to corrosion. Unfortunately, the tubes can experience failure during service caused by the formation of voids in the tube wall brought on by creep stress generated by the pressure differential and thermal gradient between the inside and outside diameters of the tube. The purpose of this project was to analyze the formation of voids in eight ring sections, each from a different ex-service tube, from a total of three different manufacturers (identified as M1, M2, and M3). Further analysis of the ex-service tubes …


The Effects Of Austempering And Cryogenic Processing On The Mechanical Properties Of Forged E4340 Steel For Automotive Engine Connecting Rods, Aaron Taylor Ludlow Jun 2014

The Effects Of Austempering And Cryogenic Processing On The Mechanical Properties Of Forged E4340 Steel For Automotive Engine Connecting Rods, Aaron Taylor Ludlow

Materials Engineering

The components in top-fuel dragster and stock car engines undergo significantly more force than their production passenger vehicle counterparts do. Therefore, they must be manufactured and processed to withstand those forces so that they do not catastrophically fail while in service. In this project, the effects of austempering and adding a cryogenic processing step to the control quench and double temper heat treatment on the tensile and hardness properties of E4340 high-strength steel were examined. Tensile test samples were machined from raw connecting rod forgings and underwent either a quench-double temper heat treatment, an austempering heat treatment, or the quench-double …


The Effect Of Silicon On The Electrochemical Corrosion Resistance Of Carbon Steel, Loan Faget, Michael S. Rouse Jun 2014

The Effect Of Silicon On The Electrochemical Corrosion Resistance Of Carbon Steel, Loan Faget, Michael S. Rouse

Materials Engineering

The purpose of this study was to investigate how the silicon (Si) content of carbon steels affects their electrochemical corrosion resistance. Tests were conducted using concentrated HCl and carbonated water on three carbon steels with different levels of silicon: 0.02, 0,19, and 0.94 weight percent. Like H2S, the prime concern of Chevron, HCl and CO2 are corrosive components in oil refinery. Electrochemical properties were measured using a potentiodynamic test outlined in Standard ASTM G59-97: Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. Previous studies have determined that adding silicon to steel increases the corrosion resistance; however, results show that corrosion …


A Process Development Study On Reducing The Anisotropy While Maintaining The Strength Of Extruded Aluminum Alloy 2195 Through Heat Treatment, Theodore James Arehart Jun 2014

A Process Development Study On Reducing The Anisotropy While Maintaining The Strength Of Extruded Aluminum Alloy 2195 Through Heat Treatment, Theodore James Arehart

Materials Engineering

The purpose of this study was two-fold: develop an aging curve for extruded 2195 aluminum and test the magnitude of the anisotropy in the extrusion throughout the aging process. Two aging curves were developed, one at 290oF and the other at 320oF, through hardness tests of aged samples. The hardness was found to change, from approximately 72 HRB to 90 HRB, within the first 6 hours and not change more than 2 HRB in the 42 hours following. It was determined that the 320oF temperature was more promising due to faster aging time, and …


Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance Jun 2014

Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance

Materials Engineering

This study aimed to characterize the electrochemical behavior of six precious metal braze alloys by performing potentiodynamic polarization tests (ParStat 2273) based on ASTM Specifications G5 and G59. To determine the extent to which the alloys will contribute to galvanic corrosion in a marine environment (3.5 wt% NaCl), corrosion analysis software was used to produce fitted Tafel lines to determine the open circuit potential, Voc, for each alloy. The Voc values for the alloys were found to be -66.58 mV for Gold ABA, 13.01 mV for Nicoro®, -39.00 mV for Nioro®, 23.4 mV …


An Intercritical Heat Treatment Study Of High Strength, Microalloyed Ferrous Open Die Forgings, Kelly Elizabeth Stewart Jun 2014

An Intercritical Heat Treatment Study Of High Strength, Microalloyed Ferrous Open Die Forgings, Kelly Elizabeth Stewart

Materials Engineering

High strength, low alloy steel is most commonly utilized in plate or sheet form-with a thickness under 4 in, one unconventional application however, is open die forging where cross-sectional area can be as large as 9.5 in by 11.5 in. When forging to larger section size than one would thermo-mechanically roll sheet steel, a new set of complications, such as variation in microstructure and mechanical properties, arise. This study investigates the heat treatment and processing options needed to negate the inherent microstructural irregularity and Charpy V-Notch (CVN) toughness variation. Intercritical heat treatment—normalizing and then quench and tempering above the A …


Revealing Prior Austenite Grain Boundaries Of 4340 Steel, Ryan Brierly Barrows Jun 2014

Revealing Prior Austenite Grain Boundaries Of 4340 Steel, Ryan Brierly Barrows

Materials Engineering

Grain growth during austenitization has a negative effect on fatigue strength. Several methods have been investigated in order to determine an accurate method of measuring the austenite grain size of 4340 steel. The McQuaid-Ehn method, an industry standard for evaluating austenite grain size, has been recognized to produce inaccurate results due to the coarsening of grains during extended austenitizing. A method utilized for hypoeutectoid steels, outlined by the ASTM-E112 standard, is investigated to potentially obtain more accurate results by reducing the duration of austenitizing. Studies regarding effective etching procedures for revealing austenite grains without austenitizing are also addressed. Samples are …


High Cycle Rotating Bending Fatigue Of 6061-T6 Friction Stir Welded Extrusions, John Chang, Travis Miller Jun 2014

High Cycle Rotating Bending Fatigue Of 6061-T6 Friction Stir Welded Extrusions, John Chang, Travis Miller

Materials Engineering

Fatigue testing was done on friction stir welded joints of 6061-T6 aluminum extrusions. Tests were run using a rotating bending fatigue machine at stresses from 111.5 to 138.7 MPa. Failures occurred on the order of 105 to 107 cycles, and an S-N curve was generated based off of the failure results. After the samples failed, the location of the failure and the number of cycles to failure were noted. Fatigue samples were designed in SolidWorks with a tapered 2 inch reduced section. The 2 inch reduced section will include the entire weld region as seen from the microhardness …


Relationship Between Bagging Methods And Pre-Weld Holding Times On Porosity Formation In 2219 Aluminum Ac-Tig Welds, Mariah Grace Head, Tyson Daniel Mobley Jun 2014

Relationship Between Bagging Methods And Pre-Weld Holding Times On Porosity Formation In 2219 Aluminum Ac-Tig Welds, Mariah Grace Head, Tyson Daniel Mobley

Materials Engineering

The purpose of this study was to determine relationships between bagging methods and pre-weld holding times on the formation of porosity when AC-TIG welding 2219 aluminum. Considering the strict guidelines and specifications required within the aerospace industry, maintaining quality welds is of paramount importance to control part integrity for aerospace applications. This project focused on two parameters involved in the preparation of aluminum parts for welding: bagging method and pre-weld holding time. Welding geometry was simplified to bead-on plate instead of the standard joint welds. Radiographic analysis of the samples showed that all levels of both parameters produced “passing welds.” …


Influence Of Grain Size And Widmanstätten Colonies On Variability Of Tensile Properties Of Forged Ti-6al-4v, Blake T. Gaspar Jun 2014

Influence Of Grain Size And Widmanstätten Colonies On Variability Of Tensile Properties Of Forged Ti-6al-4v, Blake T. Gaspar

Master's Theses

When testing forgings for specifications, it was found that some parts did not meet the requirements for mechanical properties. This triggered an investigation into two of the parts from the lot that did not meet specification. The ultimate reason for failure was due to lower than necessary yield strength and ultimate tensile strength values, as well as unwanted variability between regions of the part. Therefore, samples of the regions were tensile tested to determine the differences that existed in yield strength, ultimate tensile strength, and elongation. After tensile testing, quantitative metallography and fractography were conducted to identify aspects of the …


Investigation Of The Phase Transformation Kinetics And Texture Evolution In A Trip Steel Under Complex Loads, Ercan Cakmak May 2014

Investigation Of The Phase Transformation Kinetics And Texture Evolution In A Trip Steel Under Complex Loads, Ercan Cakmak

Doctoral Dissertations

The martensitic phase transformation kinetics and its relation with texture evolution and deformation/transformation microstructures under complex loading conditions were investigated in a 304L stainless steel that exhibits the transformation induced plasticity (TRIP) effect when strained at ambient temperature. The applied load paths included torsional and biaxial deformation scenarios including simultaneous biaxial torsion/tension and torsion/compression as well as stepwise deformation of tension followed by torsion. Synchrotron x-ray and electron back-scatter diffraction techniques were used to investigate the phase transformation-microstructure-texture evolutions relations.

Under torsional deformation, the inhomogeneous distribution of martensite phase fractions were recorded through the radius of solid cylindrical specimens consistent …


Shape Memory Behavior Of Single And Polycrystalline Nickel Rich Nickel Titanium Alloys, Irfan Kaya Jan 2014

Shape Memory Behavior Of Single And Polycrystalline Nickel Rich Nickel Titanium Alloys, Irfan Kaya

Theses and Dissertations--Mechanical Engineering

NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni51Ti49 (at.%) single-crystals are determined. Their properties are sensitive …


Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann Jan 2014

Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann

Theses and Dissertations--Chemical and Materials Engineering

Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium.

Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy …


Precipitation, Orientation And Composition Effects On The Shape Memory Properties Of High Strength Nitihfpd Alloys, Emre Acar Jan 2014

Precipitation, Orientation And Composition Effects On The Shape Memory Properties Of High Strength Nitihfpd Alloys, Emre Acar

Theses and Dissertations--Mechanical Engineering

NiTiHf high temperature shape memory alloys are attractive due to their high operating temperatures (>100 oC) and acceptable transformation strain compared to NiTi. However, NiTiHf has limitations due to their lack of ductility and low strength, resulting in poor shape memory properties. In this study, Pd has been added to NiTiHf alloys in an attempt to improve their shape memory behavior. A combined approach of quaternary alloying and precipitation strengthening was used.

The characterization of a Ni45.3Ti29.7Hf20Pd5 (at. %) polycrystalline alloy was performed in compression after selected aging treatments. Transmission electron …


Thermodynamics And Crystallography Of The Γ→Ε→Α' Transformation In Femnalsic Steels, Scott Thomas Pisarik Jan 2014

Thermodynamics And Crystallography Of The Γ→Ε→Α' Transformation In Femnalsic Steels, Scott Thomas Pisarik

Masters Theses

"FeMnAlSiC steels which exhibit two-stage transformation induced plasticity (TRIP) behavior characterized by the γ→ε→α' dual stage martensitic transformation promise to take a leading role in the development of 3rd generation advanced high strength steels. The crystallographic orientation relationship of the γ→α' and γ→ε athermal martensitic transformations in these steels has been determined as the Kurdjumov-Sachs and the Shoji-Nishiyama, respectively. Six crystallographic variants of α-martensite consisting of three twin-related variant pairs were observed in ε- bands. A planar parallelism of {0001}ε || {110}α' and a directional relation of α' lying within 1⁰ of ε existed for these variants. Two regular solution …