Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Metallurgy

The Effects Of Heat Treatment On Area Percent Porosity And Corrosion Behavior Of High-Nickel Thermal Spray Coatings, Travis Crowe, Alec Guraydin Jun 2011

The Effects Of Heat Treatment On Area Percent Porosity And Corrosion Behavior Of High-Nickel Thermal Spray Coatings, Travis Crowe, Alec Guraydin

Materials Engineering

Samples of two Thermal Spray Coating (TSC) alloys on a low carbon steel substrate were obtained: alloy C276 and Nicko-Shield 200. Specimens of each alloy were subjected to heat treatments at temperatures at 1100° for 60 minutes and 1200° for 10 minutes, with some specimens left in the as-sprayed condition. Three replicates were prepared for each condition. Thin 1” strips were cut using a diamond wafering blade for porosity measurements and 2” x 1” specimens were cut for corrosion testing using a SiC abrasive saw. The porosity specimens were mounted in acrylic resin, polished, and examined using SEM. From these …


Characterization Of The Relationship Between The Microstructure And Tensile Strength Of Annealed Ti-6al-4v, Aldo Corona Jun 2011

Characterization Of The Relationship Between The Microstructure And Tensile Strength Of Annealed Ti-6al-4v, Aldo Corona

Materials Engineering

Tensile coupons of Ti-6Al-4V were heat treated at varying annealing temperatures from 1200°F (648°C) to 1450°F (787°C) at 50°F (23°C) increments for 1 hour. The samples were air cooled to room temperature or furnace cooled to 800°F (426°C) followed by air cooling to room temperature. Four tensile coupons were treated at each annealing temperature and cooling rate. Alpha case was observed to form on the surface of the samples post heat treatment with a maximum depth of 25 µm (.001 in). Samples were tensile tested for their ultimate tensile strength, yield strength, and percent elongation. Samples across all annealing temperatures …


Dissimilar Metal Weld Variability Due To Lot Differences In Nitinol/ Stainless Steel Interface, Matthew R. Rudow Jun 2011

Dissimilar Metal Weld Variability Due To Lot Differences In Nitinol/ Stainless Steel Interface, Matthew R. Rudow

Materials Engineering

Abstract

An experiment was conducted to determine and reduce the causes of variation between a 304 Stainless Steel and super elastic Nickel Titanium dissimilar metal weld. Six factors were established to understand the cause of variation: perpendicularity, final grind, surface finish, weld force, weld pulse duration, and alignment. Using a rotational test with an air piston break pressures were established and charted in Minitab to identify trends. It was shown that weld force and weld pulse duration were the two factors that had the most influence on break strength. This data also showed that higher strength groups had less variability. …