Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 474

Full-Text Articles in Metallurgy

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers Jan 2024

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers

Theses and Dissertations--Chemical and Materials Engineering

Experimental process simulation and quantification of microstructure development during processing are challenging due to limitations with machinery temperature capability, inadequate resolution and sampling volume of currently available characterization techniques, and difficulty characterizing material microstructures as close to processing-relevant conditions as possible. This dissertation addresses how process simulation can be performed using Gleeble thermomechanical technologies and how microstructure development during these processing simulations can be quantified both in-situ and ex-situ.

The first portion of this dissertation demonstrates how Gleeble technologies can be applied to simulate complex material processing conditions in order to produce process-property profiles that can be used to inform …


Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha Dec 2023

Temperature Gradient Effect On Solid-Liqid Interface Properties Of Al-Cu Alloy: A Molecular Dynamics Study, Prashant Kumar Jha

All Theses

Aluminum-copper (Al-Cu) alloys are widely used in the aerospace industry due to their favorable strength-to-weight ratio, good fatigue resistance, and corrosion resistance. These properties make Al-Cu alloys an excellent choice for aircraft structural components that require high strength and low weight. Additive manufacturing (AM), also known as 3D printing, has emerged as a promising processing method for Al-Cu alloys in aerospace manufacturing. AM enables the production of lightweight optimized geometries difficult to manufacture through conventional subtractive methods. AM also reduces material waste by only depositing material where needed in the part geometry. The rapid solidification conditions in AM processes motivate …


Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson May 2023

Surface Corrosion Response Of Al Alloys A383 And Aural 2 With Ce Additions In Aqueous Nacl And Salt-Fog Environments, Michael James Thompson

Masters Theses

Copper is commonly used in aluminum alloys to increase its strength by solid solution and precipitation strengthening, however, the corrosion resistance is inversely related to the amount of copper in the alloy. Over 70 percent of material used to produce aluminum alloys in the US come from recycled (secondary) alloys, many of which have a copper content of more than one percent by weight. Alloys with tightly controlled tolerances, where copper is seen as an impurity, are unable to utilize many of the recycling feedstock without adding newly processed (primary) aluminum to dilute impurities to within specifications. Primary aluminum is …


Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi Apr 2023

Mechanical Characterization Of Additively Manufactured Alloys Compared To Their Wrought Counterparts, Laith A. Alqawasmi

Mechanical Engineering ETDs

Additive manufacturing is a method of manufacturing based on building parts layer by layer, allowing for more control over shape of the product, therefore reducing machining costs, reducing material waste, faster production times and the ability to build complex engineering design that other manufacturing technologies won’t be able to produce. This research is on the tensile and indentation testing (following ASME standards) of 3D printed Ti-6Al-4V and Inconel 718 built by powder-based direct energy deposition technology. Ti-6Al-4V is an attractive material for the aerospace and aviation industry, and Inconel 718, a nickel-chromium based superalloy, is an attractive material for usage …


Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian Feb 2023

Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian

LSU Doctoral Dissertations

Despite the significant improvements in manufacturing and synthesis processes of metals and ceramics in the past decades, there are still areas in which the procedure is still frequently more of an art or skill rather than a science. Therefore, systematic and combined experimental and computational studies are required to facilitate the development of techniques that offer thorough understanding of the events taking place during manufacturing and synthesis processes. With regard to these issues, it is paramount to address microscale characterizations and atomic scale understanding of the events during fabrication processes. One of the focuses of this study is unraveling fundamental …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto Jan 2023

Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto

UNF Graduate Theses and Dissertations

This project employs multi-instrument materials characterization to analyze material made with the “Cold Spray” additive manufacturing process. Cold spray is an emerging additive manufacturing technique with unique benefits resulting from its low temperature adhesion process induced by plastic deformation. Metallic powder collides at high speeds creating three dimensional materials and coatings without the need for melting. Copper cold sprayed specimens were analyzed using a series of imaging techniques to characterize the microstructure at varying levels of detail and magnification. Scanning electron microscopy and electron back scattered diffraction were paired with microhardness testing to generate a correlative comparison between microstructure and …


Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters Jan 2023

Design And Fabrication Of A High-Performance Heat Exchanger Using An Optimized Three-Dimensional Surface Structure Through Additive Manufacturing, Seth T. Waters

Electronic Theses and Dissertations

A heat exchanger is a device used to transfer thermal energy between two intertwining fluid pathways. In this study, the design of a novel heat exchanger is proposed using functional gradient double gyroid structure. The complex internal geometries of the gyroid structure significantly increases the surface area to volume ratio, and potentially could expressively improve efficiency of the heat transfer. The proposed idea provides a new approach for the design of a high-efficiency heat exchanger. In order to fabricate the complex structured heat exchanger system additive manufacturing is adapted instead of traditionally subtractive manufacturing techniques or casting. The prototypes of …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Near-Ir Laser Ablation Of Simulated Radiologically Contaminated Oxides On Carbon Steel Feeder Pipes, Thao Viet Do Nov 2022

Near-Ir Laser Ablation Of Simulated Radiologically Contaminated Oxides On Carbon Steel Feeder Pipes, Thao Viet Do

Electronic Thesis and Dissertation Repository

As nuclear power plants age and retire from service, many countries face significant challenges concerning the safe long-term storage and disposal of large volumes of low and intermediate level radioactive wastes (L&ILW). The volumes of metallic waste are of particular concern, as when metal corrodes it produces hydrogen that could lead to pressure build-up in interim storage and disposal. In Canada, a significant fraction of the metallic wastes for Canada Deuterium Uranium (CANDU) nuclear reactors are out-of-core reactor components, such as carbon steel (CS) feeder pipes. The radioactive contamination is expected to be largely confined to the surface oxide layers …


Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht Aug 2022

Creep Behavior Of A Ti-Based Multi-Principal Element Alloy, Benjamin Elbrecht

All Theses

Abstract

The understanding of microstructural damage mechanisms is the foundation of better understanding existing materials and future material development. There are significant challenges to measuring these damage mechanisms in-situ as continuous observation of the state of the microstructure is difficult or impossible for many experimental setups. This thesis presents a method for measuring grain boundary sliding (GBS) and local strain concentrations in-situ via a Heaviside function based algorithm. GBS is the shearing of two grains along their shared grain boundary and is a common damage mechanism in creep which presents as a discontinuity that can be measured with a Heaviside …


Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith Jun 2022

Analysis Of Novel Corrosion Resistant Maraging Steels For Use In Additive Manufacturing, Bradley Michael Samuel, James Knowlton Smith

Materials Engineering

Stainless maraging steel has been proven to be an industry standard material for plastic injection molds. Its high hardness and corrosion resistance extend the lifetime of the tool. This alloy system is also well-suited to additive manufacturing, which can be utilized to form internal cooling channels, further increasing tool life. Using Rapid Alloy Development (RAD) Oerilkon METCO is developing a new composition of stainless maraging tool steel that has high hardness/strength, is corrosion resistant, and has additive-capable melting and solidification properties. This study tests the hardness and corrosion resistance of the new RAD alloys against the current market competitor Corrax …


Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman Jun 2022

Non-Destructive Material Analysis Of Metals And Composites Via Thermography, Jonathan R. Doubt, James L. Chapman

Materials Engineering

The Naval Surface Warfare Center, Port Hueneme Division, is interested in the development of non-destructive damage assessment of shipboard materials via drones at distance. Long Pulsed Thermography (LPT), a method of non-destructive evaluation, was investigated as a possible method for detecting damage in metals (5005h24 Al alloy and 1008 carbon steel) and composites (aramid fiber honeycomb sandwich structure) at distances from 0.5 m to 3.0 m. LPT was conducted using two 1000 W can lights to heat the samples, and a FLIR E8-XT thermal camera. The images were then analyzed using ImageJ software to determine if damage could be detected …


Characterization Of Hydrogen Embrittlement Sensitivity In High Hardness Steels, David Ahlen Salley May 2022

Characterization Of Hydrogen Embrittlement Sensitivity In High Hardness Steels, David Ahlen Salley

Theses and Dissertations

High hardness steels can be affected by delayed brittle cracking often attributed to hydrogen embrittlement. Improved resistance to hydrogen embrittlement would be beneficial to many industries including military, automotive, and high-rise construction. While other prevention methods include coating, trapping, and barriers, design efforts in this study were focused on improving intrinsic properties to be more resistant to hydrogen embrittlement. Four alloys targeting 477 – 534 HB were designed and produced in-house and compared against a commercial grade 500 HB alloy. Charpy V-notch (CVN) impact toughness and tensile specimens were made according to ASTM E23 and ASTM E8 to characterize mechanical …


Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse Jan 2021

Application Of Laser Assisted Ultrasonic Nanocrystal Surface Modification On Aluminum And 3d Printed Titanium, Eman Hassan, Thomas Crouse

Williams Honors College, Honors Research Projects

A novel surface treatment, laser assisted ultrasonic nanocrystal surface modification (LA-UNSM), has proved effective in increasing surface hardness, and fatigue life. The objective of this research is to determine the effectiveness of this process on components created with additive manufacturing. To accomplish this, we investigated the effectiveness of LA-UNSM treatment on aluminum, a common 3d printed metal, and the effectiveness of LA-UNSM processing on 3d printed titanium. We first conducted our own literature review to assess the practicality of using this same treatment on aluminum. We then treated traditionally manufactured aluminum at varying levels of laser intensity to determine if …


Thermally Driven Spin Transport In Ferromagnetic Metals, Wafa Saud Aljuaid Jan 2020

Thermally Driven Spin Transport In Ferromagnetic Metals, Wafa Saud Aljuaid

Electronic Theses and Dissertations

Since the discovery in 2008, the spin Seebeck effect has become one of the most active topics in the spin caloritronics research field. It opened a new way to create spin current by a combination of magnetic fields and heat. A temperature gradient in ferromagnetic (FM) metals generates a ow of spin current due to split of spin chemical potential between spin up and spin down electrons. This thermal spin current has been detected using an attached nonmagnetic heavy metal with large spin Hall angle via the inverse spin hall effect (ISHE). A voltage signal is generated since the nonmagnetic …


Table Top Dome Tester, Travis Bernard, Sarah Kassinger, Amanda O'Reilly, Scott Salerno Jan 2020

Table Top Dome Tester, Travis Bernard, Sarah Kassinger, Amanda O'Reilly, Scott Salerno

Williams Honors College, Honors Research Projects

The Erichsen Cupping Test was used as a basis to design a dome tester. The intention of a dome tester is to test sheet metal material properties in all directions. This was done by clamping a piece of sheet metal and using a piston and hydraulic press to punch through the material. The force used to punch the material and the height of the deforming material can be gathered and the sheet metal properties can then be calculated. At the end of the project the team was able to successfully design and manufacture a hydraulic dome tester. However, due to …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …


Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq Oct 2019

Effect Of Ion Implantation On The Mechanical Properties Of The Grain And Grain Boundary Regions Of Inconel X750, Maisaa Nezar Tawfeeq

Electronic Thesis and Dissertation Repository

Annulus gas spacers in CANada Deuterium Uranium (CANDU) nuclear reactors are made from the heat-treated Inconel X750 Nickel-based alloy. This alloy is designed to have high strength and creep resistance at elevated temperature. Unlike other reactor designs, the CANDU reactor has a high thermal neutron fluence, which results in an enhancement of the radiation damage and the internal production of helium and hydrogen. They are thus susceptible to microstructural instability and mechanical property degradation with time. Studies of ex-service spacers have indicated that they display intergranular embrittlement and lower ultimate tensile strength compared to nonirradiated Inconel X750. The primary degradation …


Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor Jun 2019

Erosion Resistance Of Tungsten-Carbide Coatings For Steel Pipes In Fluid Catalytic Cracking Units, Davis Vannasing, Jennifer Hulfachor

Materials Engineering

In petroleum processing, the flow of catalyst readily leads to erosion of piping in a fluid catalytic cracking unit. Advances in coating materials and processes necessitate a re-evaluation of current protection methods. Commercially available tungsten-carbide (WC) claddings and nanostructured WC-W CVD coatings were investigated as potential alternative erosion-resistant coatings. Erosion tests by solid particle impingement were conducted on 2 variations of claddings and 1 variation of WC-W coatings following ASTM standard G76. A36 steel coupons were used as reference samples. For statistical validation, 2-3 replications of the tests were performed for the claddings and WC-W coating. Testing was conducted using …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …


In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila Jun 2018

In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila

Materials Engineering

Scanning electron microscopy (SEM) video recording is used to characterize the solidification of small volumes of 99.999% pure gallium (Ga) and eutectic gallium-indium (eGaIn) under a high vacuum environment. Specimen are superheated to 55℃ using a hot plate, cast into spherical droplets, and cooled in situ by means of a Peltier cooling stage. Special attention is given to the preparation of the specimen prior to viewing because of gallium and its alloys’ nature to form an oxide layer when melted and air cooled. The oxide acts as a skin that inhibits the observation of microstructural features during solidification. Heated samples …


Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme Apr 2018

Evolution Of Mg Az31 Twin Activation With Strain: A Machine Learning Study, Andrew D. Orme

Undergraduate Honors Theses

Machine learning is being adopted in various areas of materials science to both create predictive models and to uncover correlations which reveal underlying physics. However, these two aims are often at odds with each other since the resultant predictive models generally become so complex that they can essentially be described as a black box, making them difficult to understand. In this study, complex relationships between microstructure and twin formation in AZ31 magnesium are investigated as a function of increasing strain. Supervised machine learning is employed, in the form of J-48 decision trees. In one approach, strain is incorporated as an …


Development Of Oxide-Dispersion-Strengthened Nickel-Based Super Alloy Powders For Additive Manufacturing, Sizhe Huang Jan 2018

Development Of Oxide-Dispersion-Strengthened Nickel-Based Super Alloy Powders For Additive Manufacturing, Sizhe Huang

Graduate Theses, Dissertations, and Problem Reports

Oxide-Dispersion-Strengthened (ODS) Nickel-Based superalloy has been drawn a huge attention and developed with good oxidation resistance, corrosion resistance and high creep strength. It has been considered as critical materials for Additive Manufacturing (AM). The quality and the efficiency of fabrication methods of ODS limits the performance of itself on AM. The development of new type of ODS, new methodologies and evaluation techniques are required if the enhanced quality of ODS and enhanced efficiency of fabrication are to be achieved. Of the current fabrication techniques for AM, Gas Atomization (GA) is widely used since they can generate spherical powders with high …


Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi Jan 2018

Design Of Shape-Conforming Nosecone For Optimal Fluid Flow From Transonic To Supersonic Range, Anna Tombazzi

Williams Honors College, Honors Research Projects

Modern flight vehicles, such as rockets, missiles, and airplanes, experience a force caused by forebody wave drag during the flight. This drag force is induced when the frontal point of each vehicle breaks the pressure wave during flight. Efforts to reduce this wave drag force to improve flight efficiency include modifying the nosecone profile of the flight vehicles to lower the drag force.

This project revolved around creating a design to make the transformation of nosecone shapes from a ¾ Parabolic profile to a ½ Power Series profile possible, mid-flight. Using a novel nosecone assembly, shape memory alloys (SMAs) and …


Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong Jan 2018

Interfacial Corrosion Of Copper And The Formation Of Copper Hydroxychloride, Mary Teague, Shengxi Li, Hongbo Cong

Williams Honors College, Honors Research Projects

Electrical circuitry is an industry, among many others, heavily using the element of copper. Ensuring the mechanical integrity of Cu is crucial, especially in salt environments, for the multifaceted composition of circuits. 4N NaCl solution (equilibrium concentration in ~84% RH) simulated this three-phase system. Rectangular Cu samples were partially immersed in both ambient and continuous lab air sparging atmospheres to understand waterline corrosion of the metal. Open circuit potentials (OCP) were continuously taken during the immersion testing for a maximum of 5 days. A scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS), Raman spectroscopy, and 3-D …


Effects Of The Internal Magnetic Field On The Magneto-Mechanical Properties Of Magnetic Shape Memory Alloys, Anthony Hobza Dec 2017

Effects Of The Internal Magnetic Field On The Magneto-Mechanical Properties Of Magnetic Shape Memory Alloys, Anthony Hobza

Boise State University Theses and Dissertations

Shape memory alloys are a class of functional material which recover from large strains without permanent deformation. The strain is accommodated by the displacement of twin boundaries in the martensite phase. The shape memory alloy Ni-Mn-Ga is also ferromagnetic. Ni-Mn-Ga preferentially magnetizes along a certain crystallographic axis. This direction of easy magnetization changes across twin boundaries, such that the directions in neighboring twin domains are nearly perpendicular.

The interaction of magnetic moments and interfaces including the crystal surface and twin boundary interfaces has a large role in the magnetization process of the material. The goal of this study is to …


The Mechanism Of Radiation-Induced Nanocluster Evolution In Oxide Dispersion Strengthened And Ferritic-Martensitic Alloys, Matthew John Swenson Aug 2017

The Mechanism Of Radiation-Induced Nanocluster Evolution In Oxide Dispersion Strengthened And Ferritic-Martensitic Alloys, Matthew John Swenson

Boise State University Theses and Dissertations

The objective of this study is to evaluate the mechanism of irradiation-induced nanoparticle evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic alloys HCM12A and HT9. Each alloy is irradiated with Fe2+ ions, protons, or neutrons to doses ranging from 1-100 displacements per atoms at 500°C. The morphology of nanoclusters are characterized using atom probe tomography. The evolution of clusters in each alloy are notably different with each irradiating particle, and the competing effects of ballistic dissolution and radiation-enhanced, diffusion-driven growth are attributed to the respective differences in cluster evolution. A phase evolution model, originally theorized …