Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Metallurgy

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez Aug 2023

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez

Doctoral Dissertations

Pursuing advanced structural materials with enhanced performance, reduced weight, and lower costs is a constant endeavor in the aerospace and automotive industries. Conventional structural alloys, such as cast irons, carbon steels, and titanium alloys, have strength, weight, and cost limitations. Aluminum-based alloys, known for their lightweight and high strength, have gained popularity in these industries. This dissertation focuses on investigating microstructure and mechanical behavior of novel powder-extruded Al-Ce-Mg alloys as potential candidates for high-performance structural materials.

This research explores using powder extrusion, a well-established forging methodology in the steel industry, to produce Al-Ce-Mg alloys with improved properties and aims to …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims Dec 2020

Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims

Doctoral Dissertations

Eutectic casting alloys of aluminum and cerium are a recent discovery and early research describes an alloy with great potential to meet the growing demand for a lightweight, economical, high specific strength material for use in high-temperature or extremely corrosive environments. The broad application of aluminum alloys across industry sectors is driven by their collection of balanced properties including economical cost, high specific strength, and flexibility of their production pathways. Additionally, their high corrosion resistance makes them a good choice for structural materials. Despite this, the push to use aluminum alloys in ever more extreme environments with higher temperatures, stresses, …


Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee Aug 2020

Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee

Doctoral Dissertations

The objectives of this proposed study are to (1) design and develop single BCC phase refractory high-entropy alloys (HEAs) for the high-temperature applications, (2) investigate the deformation mechanisms of refractory HEAs, (3) improve an integrated approach, coupling focused experiments and theoretical modeling, to design, discover, and develop HEAs, and (4) understand the alloy design-microstructure-property-performance links underlying the mechanical behavior of refractory HEA systems for gas-turbine applications

A traditional alloy system generally includes one or two principal elements that form the matrix with other additional elements, e.g., iron or aluminum alloys, to strengthen some specific properties, such as strength and corrosion …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed Dec 2010

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …