Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Metallurgy

Tin-Silver As A Novel Biodegradable Metallic Biomaterial, Charley Goodwin May 2024

Tin-Silver As A Novel Biodegradable Metallic Biomaterial, Charley Goodwin

All Dissertations

The Essure device is a non-hormonal, minimally-invasive, permanent female sterilization implant, removed from the market due to an increase in adverse events, hypothesized to be caused by corrosion of the Sn-Ag component of the implant. The goals of this dissertation were to first develop implant retrieval methods for Essure devices and surrounding tissue, documenting signs of degradation and metallic degradation products, then to characterize the electrochemical behavior of Sn-Ag in biologically representative environments and finally, to assess the biological interaction of Sn-Ag. Retrieval analyses developed successful methods, qualifying the degree of corrosion, primarily of the Sn-Ag component and finding Sn …


Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom Jan 2021

Exploring Rapid Solidification And Equal Channel Angular Pressing In The Fabrication Of Mg-Based Alloys For Medical Applications, Emily Tom

Dissertations, Master's Theses and Master's Reports

The development of magnesium bioresorbable implants has become increasingly popular due to the increased need for temporary implants and magnesium’s excellent biocompatibility and suitable elastic modulus. Even though magnesium is an excellent candidate, when alloyed with other metals magnesium’s corrosion rate becomes too rapid for bioresorbable medical applications. The investigation into novel processing techniques to control the formation of precipitates to improve mechanical strength and ductility as well as corrosion rates has become of interest. This work investigates the combination of two nonequilibrium processing techniques, rapid solidification (RS) and equal channel angular pressing (ECAP), and the effects it has on …


The Effect Of Distal Core Flattening And Heat Treatment On 304 Stainless Steel Guide Wires, Andrew Spencer Yap, Bryce Eric Veit, Matthew Frederick Lopez Villena Jun 2020

The Effect Of Distal Core Flattening And Heat Treatment On 304 Stainless Steel Guide Wires, Andrew Spencer Yap, Bryce Eric Veit, Matthew Frederick Lopez Villena

Materials Engineering

The mechanical response of 304 stainless steel guide wires due to different temper conditions and amounts of flattening is to be explored in this project. For this specific project, there is no public literature on the mechanical properties of guide wires with the above conditions through tensile testing or Turns to Failure Testing. To address this, the project with Abbott Vascular will measure the mechanical properties of guide wires using the aforementioned factors. Due to a lack of previous literature on this research topic, there are no quantitative goals for the project, however, any new research compiled in this area …


Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao Jan 2017

Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao

Dissertations, Master's Theses and Master's Reports

Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn’s intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic.

In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson May 2015

The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson

FIU Electronic Theses and Dissertations

Because of their excellent mechanical, tribological, and electrochemical properties, Cobalt Chromium Molybdenum alloys have been used as the material for both the stem and head of modular hip implants. Corrosion is one mechanism by which metal debris, from these implants, is generated, which can lead to adverse events that requires revision surgery. Manufacturing process such as wrought, as-cast, and powder metallurgy influences the microstructure, material properties, and performance of these implants

The current research focuses on analyzing the microstructure of CoCrMo alloys from retrieved hip implants with optical and scanning electron microscopy. Additionally, energy disperse spectroscopy was utilized to determine …


Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang May 2015

Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang

Doctoral Dissertations

Bulk metallic glasses (BMGs) are a family of novel alloys with amorphous microstructures. The combination of their excellent mechanical properties, good chemical stability, high thermal formability, and general biocompatibility has brought up new opportunities for biomaterials. Research in this dissertation was focused on exploring multiple biomedical functionalities of Zr-based BMGs over a wide spectrum, combining materials and biological characterizations, through experimental and computational approaches. Four distinct yet interconnected tasks were endeavored, involving inflammation, hard-tissue implant, soft-tissue prosthesis, and pathogenic infection.

The inflammation that can be potentially triggered by Zr-based BMGs was investigated using macrophages. Lower level or comparable macrophage activations …


In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr Apr 2015

In-Vivo Corrosion And Fretting Of Modular Ti-6al-4v/Co-Cr-Mo Hip Prostheses: The Influence Of Microstructure And Design Parameters, Jose Luis Gonzalez Jr

FIU Electronic Theses and Dissertations

The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown …


Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann Jan 2014

Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann

Theses and Dissertations--Chemical and Materials Engineering

Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium.

Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy …


Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong Mar 2013

Bacterial Growth On Metal And Non-Metal Surfaces In A Static Bioreactor, Rolan Yuk Loong Liong

Master's Theses

Research was conducted to observe bacterial growth on the surface of metals in a static bioreactor. Metal and non-metal samples were subjected to bacterial exposure (1 day and 9 days). The metal samples were surface treated prior to bacterial exposure. The microstructures of the surface treated samples were analyzed by optical microscopy. After exposure, the microstructures of the samples were analyzed by scanning electron microscopy (SEM). The analysis suggested that microbial attachment on the surface was related to the underlying microstructure of steel. The preferential attachment of microbes could potentially be influenced by cathodic and anodic regions created by the …