Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

High Temperature Silicon Carbide Mixed-Signal Circuits For Integrated Control And Data Acquisition, Ashfaqur Rahman Dec 2015

High Temperature Silicon Carbide Mixed-Signal Circuits For Integrated Control And Data Acquisition, Ashfaqur Rahman

Graduate Theses and Dissertations

Wide bandgap semiconductor materials such as gallium nitride (GaN) and silicon carbide have grown in popularity as a substrate for power devices for high temperature and high voltage applications over the last two decades. Recent research has been focused on the design of integrated circuits for protection and control in these wide bandgap materials. The ICs developed in SiC and GaN can not only complement the power devices in high voltage and high frequency applications, but can also be used for standalone high temperature control and data acquisition circuitry.

This dissertation work aims to explore the possibilities in high temperature …


Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman Nov 2015

Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman

Doctoral Dissertations

Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, continuing the traditional way of scaling to sub-20nm technologies is proving to be very difficult as MOSFETs are reaching their fundamental performance limits [1] and interconnection bottleneck is dominating IC operational power and performance [2]. Migrating to 3-D, as a way to advance scaling, has been elusive due to inherent customization and manufacturing requirements in CMOS architecture that are incompatible with 3-D organization. Partial attempts with die-die [3] and layer-layer [4] stacking have their own limitations [5]. We …


Phase Locked Loop Integrated Circuit, Scott Buchanan, Jonathan Bonello Jun 2015

Phase Locked Loop Integrated Circuit, Scott Buchanan, Jonathan Bonello

Electrical Engineering

No abstract provided.


Chipper: Capacitive Bed Occupancy Sensing For An Intelligent Alarm Clock, David Levi Jun 2015

Chipper: Capacitive Bed Occupancy Sensing For An Intelligent Alarm Clock, David Levi

Electrical Engineering

What if your alarm clock knew when you got out—and stayed out—of bed? Current alarm clocks happily let you go back to bed after turning them off. In this project, I build an alarm which only stops ringing when you get out bed, and starts ringing again if you lie back in bed.

This project uses capacitance to detect bed occupancy. A person on or near the bed creates a tiny, picofarads level increase in capacitance, as seen by a sensor placed under the mattress. A microprocessor interprets this signal, and also drives an audio alarm. Shielding of the sensor …


Design And Fabrication Techniques Of Devices For Embedded Power Active Contact Lens, Errol Heradio Leon Jun 2015

Design And Fabrication Techniques Of Devices For Embedded Power Active Contact Lens, Errol Heradio Leon

Master's Theses

This thesis designed and fabricated various devices that were interfaced to an IC for an active contact lens that notifies the user of an event by detection of an external wireless signal. The contact lens consisted of an embedded antenna providing communication with a 2.4GHz system, as well as inductive charging at an operating frequency of 13.56 MHz. The lens utilized a CBC005 5µAh thin film battery by Cymbet and a manufactured graphene super capacitor as a power source. The custom integrated circuit (IC) was designed using the On Semiconductor CMOS C5 0.6 µm process to manage …


Architecting Np-Dynamic Skybridge, Jiajun Shi Mar 2015

Architecting Np-Dynamic Skybridge, Jiajun Shi

Masters Theses

With the scaling of technology nodes, modern CMOS integrated circuits face severe fundamental challenges that stem from device scaling limitations, interconnection bottlenecks and increasing manufacturing complexities. These challenges drive researchers to look for revolutionary technologies beyond the end of CMOS roadmap. Towards this end, a new nanoscale 3-D computing fabric for future integrated circuits, Skybridge, has been proposed [1]. In this new fabric, core aspects from device to circuit style, connectivity, thermal management and manufacturing pathway are co-architected in a 3-D fabric-centric manner.

However, the Skybridge fabric uses only n-type transistors in a dynamic circuit style for logic and memory …


Architecting Skybridge-Cmos, Mingyu Li Mar 2015

Architecting Skybridge-Cmos, Mingyu Li

Masters Theses

As the scaling of CMOS approaches fundamental limits, revolutionary technology beyond the end of CMOS roadmap is essential to continue the progress and miniaturization of integrated circuits. Recent research efforts in 3-D circuit integration explore pathways of continuing the scaling by co-designing for device, circuit, connectivity, heat and manufacturing challenges in a 3-D fabric-centric manner. SkyBridge fabric is one such approach that addresses fine-grained integration in 3-D, achieves orders of magnitude benefits over projected scaled 2-D CMOS, and provides a pathway for continuing scaling beyond 2-D CMOS.

However, SkyBridge fabric utilizes only single type transistors in order to reduce manufacture …