Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in VLSI and Circuits, Embedded and Hardware Systems

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize May 2019

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize

Graduate Theses and Dissertations

As the demand for an energy-efficient alternative to traditional synchronous circuit design grows, hardware designers must reconsider the traditional clock tree. By doing away with the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers to better implement asynchronous circuit designs which have been optimized using the same industry standard tools that are already used in sequential synchronous designs. This thesis offers a new flow for such tools which implements the MTNCL asynchronous circuit architecture.


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


El Capitán: Cal Poly Rose Float Digital Drive System, Gregory Raffi Baghdikian Jun 2016

El Capitán: Cal Poly Rose Float Digital Drive System, Gregory Raffi Baghdikian

Computer Engineering

In today’s world of smartphones, self-driving cars, and internet-connected coffee makers, it seems as if computers are contained in everything around us. These “embedded systems” have become critical components of our lives, improving everything about the things they control, from cost, to speed, to simplicity. One area that embedded systems has hardly gained a foothold is in the world of floatbuilding. Most of the floats in the Tournament of Roses Parade, including the one built jointly by Cal Poly San Luis Obispo and Cal Poly Pomona, are technologically very simple, using mostly analog components and rudimentary discrete digital logic to …


Discrete Alarm Clock, Travis Moore, Collin Barth Jun 2011

Discrete Alarm Clock, Travis Moore, Collin Barth

Electrical Engineering

The standard alarm clock, as used daily by millions worldwide, has clear room for modification and improvement. This paper documents an implementation that rectifies many of these flaws. Improvements include adjustable snooze length, an IR remote for ease of use, and an RF headset for discrete alarm use or potential incorporation into a device much like a hearing aid. The processes involved in creating a digital alarm clock, as well as the obstacles met in the implementation of the enhanced design, are detailed within.