Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications Commons

Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 288

Full-Text Articles in Systems and Communications

The Relaying Network In Free-Space Optical Communications Using Optical Amplifiers In Cascaded Configuration, Ucuk Darusalam, Arockia Bazil Raj, Fitri Yuli Zulkifli, Purnomo Sidi Priambodo, Eko Tjipto Rahardjo Aug 2023

The Relaying Network In Free-Space Optical Communications Using Optical Amplifiers In Cascaded Configuration, Ucuk Darusalam, Arockia Bazil Raj, Fitri Yuli Zulkifli, Purnomo Sidi Priambodo, Eko Tjipto Rahardjo

Makara Journal of Technology

Optical relaying is the best technique to implement free-space optical (FSO) communications as a terrestrial platform. However, atmospheric turbulence (AT) limits the optical-propagation path length. In this study, the implementation of some optical amplifiers (OAs) in cascaded configuration, namely, erbium-doped fiber amplifiers, semiconductor OAs, and Raman amplifiers (RAs), are investigated through simulation. This study aims to search for the maximum link distance of an optical propagation and enhance the FSO performance caused by each configuration of OAs. The optical relaying network consists of three nodes, with each node designed with a space of several kilometers under the influence of AT. …


Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd Aug 2023

Exploring Bistatic Scattering Modeling For Land Surface Applications Using Radio Spectrum Recycling In The Signal Of Opportunity Coherent Bistatic Simulator, Dylan R. Boyd

Theses and Dissertations

The potential for high spatio-temporal resolution microwave measurements has urged the adoption of the signals of opportunity (SoOp) passive radar technique for use in remote sensing. Recent trends in particular target highly complex remote sensing problems such as root-zone soil moisture and snow water equivalent. This dissertation explores the continued open-sourcing of the SoOp coherent bistatic scattering model (SCoBi) and its use in soil moisture sensing applications. Starting from ground-based applications, the feasibility of root-zone soil moisture remote sensing is assessed using available SoOp resources below L-band. A modularized, spaceborne model is then developed to simulate land-surface scattering and delay-Doppler …


Validation Of Expanded Trend-To-Trend Cross-Calibration Technique And Its Application To Global Scale, Ramita Shah Jan 2023

Validation Of Expanded Trend-To-Trend Cross-Calibration Technique And Its Application To Global Scale, Ramita Shah

Electronic Theses and Dissertations

The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique was validated with several trusted cross-calibration techniques to evaluate its accuracy. Initially, the expanded T2T technique was validated with three independent RadcaTS RRV, DIMITRI-PICS, and APICS models, and results show a 1% average difference with other models over all bands. Further, this technique was validated with other SDSU techniques to calibrate the newly launched satellite Landsat 9 with …


Efficient Design And Implementation Of Miniaturized Microstrip Diplexer Using Dual Open Stub Loaded Resonator For 5g Applications, Islam F. Abu Elkhair, Hamdi A. Elmikati, Mohamed M. Ashour, Amr H. Hussein Jan 2023

Efficient Design And Implementation Of Miniaturized Microstrip Diplexer Using Dual Open Stub Loaded Resonator For 5g Applications, Islam F. Abu Elkhair, Hamdi A. Elmikati, Mohamed M. Ashour, Amr H. Hussein

Mansoura Engineering Journal

The design and implementation of a compact size diplexer with high isolation, low insertion loss, and small fractional bandwidths is a promising issue in recent wireless communication systems. In this paper, a novel microstrip diplexer has been introduced based on the utilization of the dual open stub loaded resonator technique. The proposed design has a very compact size of with a high operating power efficiency. The diplexer is designed to operate at two resonance frequencies of and with very low insertion losses of and , respectively. Moreover, it provides high isolation values of and for and , respectively. The diplexer …


Optical Control System For Atmospheric Turbulence Mitigation, Martyn Lemon Dec 2022

Optical Control System For Atmospheric Turbulence Mitigation, Martyn Lemon

All Theses

Propagation of laser light is distorted in the presence of atmospheric turbulence. This poses an issue for sensing, free-space optical communications, and transmission of power. With an ever-increasing demand for high-speed data communications, particularly between satellites, unmanned vehicles, and other systems that benefit from a point-to-point link, this issue is critical for the field. A variety of methods have been proposed to circumvent this issue. Some major categories include the manipulation of the light’s structure, an adaptive scheme at the optical receiver, scanning mirror systems, or a transmission of simultaneous signals with a goal to improve robustness.

There is an …


Hardware Security For Wireless Communications Systems Using Antenna-Based Radio Frequency Fingerprint Engineering, Noemi Miguelez Gomez Oct 2022

Hardware Security For Wireless Communications Systems Using Antenna-Based Radio Frequency Fingerprint Engineering, Noemi Miguelez Gomez

Doctoral Dissertations and Master's Theses

The design and application of novel physical-layer security techniques have been increasing in the last decades as means to enhance the security that more traditional techniques provide to wireless communications systems. Well-known hardware security techniques, such as radio frequency fingerprinting, use unintended manufacturing process variations and unique hardware structures in the semiconductors for applications such as identification and classification of the source of different transmitted signals, and detection of hardware modifications. The uniqueness of the features that two different modules present, even maintaining the same design, can be used for modules characterization at a lower cost and complexity than other …


X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus Jun 2022

X-Band Rf Transmitter Design For Multi-Purpose Small Satellite Communication Operations, Omer F. Gumus

Master's Theses

This thesis provides a description of the analysis, design, and tests of an X-band RF Transmitter communication system for small satellites. X-band transmitter systems are becoming popular in the upcoming deep space missions. Most of the deep-space ground stations have been using X-band frequencies to receive or transmit signals. The X-band (<10 GHz) can offer lower atmospheric losses and up to a couple of Mbps data rates for multiple satellite operations. Nowadays, many small satellites have been using frequency bands such as VHF, UHF, L, and S-band frequencies for communication. From deep space to the ground station, the low-frequency ranges are inadequate in providing Mbps level data rates and enough bandwidth for deep space missions.

The main focus of this thesis was the development of the subsystems such as gain block amplifier, Mixer, Bandpass Filter, and RF power amplifier. The subsystems were designed separately, then they were connected together to perform an end-to-end system test. One of the thesis aims is to design …


Design, Implementation, And Test Of Spacecraft Antennae And A Ground Station For Mesat1, Travis Russell May 2022

Design, Implementation, And Test Of Spacecraft Antennae And A Ground Station For Mesat1, Travis Russell

Electronic Theses and Dissertations

MESAT1 is a CubeSat that was proposed by the University of Maine in response to NASA's CubeSat Launch Initiative, and in early 2020 was selected by NASA to be launched into a Low Earth Orbit (LEO) in June of 2022. The satellite will carry four low-cost complementary metal–oxide–semiconductor (CMOS) cameras which serve as sensing instruments for three science missions proposed by K-12 schools in Maine. The cameras will periodically take pictures of Earth to analyze water turbidity, identify urban heat islands, and predict harmful algal blooms. The multi-spectral image data is packed into frames and downlinked as Binary Phase-Shift Keying …


Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix Mar 2022

Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix

Masters Theses

This work proposes wideband and broadband Planar Ultra-wideband Modular Antenna (PUMA) arrays designed to improve cost and reliability for high production volume commercial and military applications. The designs feature simplified PCB stack-ups with high dielectric constant (Dk) dimensionally stable materials to improve the manufacturing cost and yield. Additionally, the packages use ball grid array (BGA) interconnects, commonly used in digital electronics, for simple solder reflow integration with radio frequency (RF) electronics. While high Dk materials present practical manufacturing benefits, theoretical background will show how and why PUMA arrays lose frequency bandwidth and scan volume with high Dk materials. Further, a …


Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh Jan 2022

Smart Uv-C Disinfectant Module, Nicole Baldy, Luke Rogers, Haitham Saleh

Williams Honors College, Honors Research Projects

The Smart UV Disinfectant device shall sanitize objects which are 18”x14”x8” or smaller and less than 20 lbs. using UV-C light. This device should contain many safety measures to prevent human and animal exposure to the UV-C light and have no public touchpoints to operate the interface. In order to achieve the first objective, this device shall contain a "sanitizing chamber" which completely encloses the object to be sanitized to prevent outside exposure with detection of any lifeforms inside of the chamber; for the second objective, it will contain a wireless interface to an Android application which can be used …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


The Application Of Leaky Wave Antennas For Medical Hyperthermia Treatment And Beamformer In Fmcw Automotive Radar Systems, Masoud Sarabi Jan 2021

The Application Of Leaky Wave Antennas For Medical Hyperthermia Treatment And Beamformer In Fmcw Automotive Radar Systems, Masoud Sarabi

Dissertations, Master's Theses and Master's Reports

Thousands of years ago human discovered that if a slice of amber is rubbed against fur, it would absorb light-weight objects. Hundreds of years after that the ancient people figured out that there are actually two different characteristics of attraction and repulsion. Another 2000 years passed when human discovered that these two wonders of nature, magnetism and electricity are actually linked together like the two sides of the same coin. Since then, in the early 19th century great huge achievements were made in antennas and propagation by scientists such as Hans Christen Oersted, Heinrich Hertz, Alexander Popov and Marconi. Since …


Mimo Antenna For Fifth Generation Mm-Wave Applications: A Bibliometric Survey, Rajeshwari R. Malekar, Laxmikant K. Shevada, Hema D. Raut, Amruta S. Dixit, Sumit Kumar Dec 2020

Mimo Antenna For Fifth Generation Mm-Wave Applications: A Bibliometric Survey, Rajeshwari R. Malekar, Laxmikant K. Shevada, Hema D. Raut, Amruta S. Dixit, Sumit Kumar

Library Philosophy and Practice (e-journal)

Nowadays most discussed technology is mm-wave and 5G communication. The requirement of 5G technology is high bandwidth, high data rate, and low latency. To fulfil these requirements for the current growth in mobile communication multiple input multiple output antenna is used. This bibliometric paper throws light on the various methods used to improve mutual coupling between multiple antennas. Various mutual coupling reduction techniques that are used in MIMO antennas like Dielectric resonator antenna, Electromagnetic Bandgap Structure, Neutralization lines, Defected Ground Structures, Metamaterial, etc. are explained. Scopus database is used for this bibliometric review on mm-wave MIMO 5G technology from the …


Simulation Of An Sp8t 18 Ghz Rf Switch Using Smt Pin Diodes, Andre De Souza Vigano Dec 2020

Simulation Of An Sp8t 18 Ghz Rf Switch Using Smt Pin Diodes, Andre De Souza Vigano

Master's Theses

Radio frequency (RF) and microwave switches are widely used in several different applications including radar, measurement systems, telecommunications, and other areas. An RF switch can control a radar’s transmit vs. receive mode, select the operating band, or direct an RF signal to different paths. In this study, a single pole eight throw (SP8T) switch using only Surface Mount (SMT) components is designed and simulated in Keysight’s Advanced Design System (ADS). Single pole eight throw is defined as one input and eight possible outputs. A star network configuration with series-shunt PIN diode switches is used to create the 8-way RF switch. …


Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq Mar 2020

Novel Passive Rfid Temperature Sensors Using Liquid Crystal Elastomers, Yousuf Shafiq

FIU Electronic Theses and Dissertations

When transporting perishable foods in the Cold Supply Chain (CSC), it is essential that they are maintained in a controlled temperature environment (typically from -1° to 10°C) to minimize spoilage. Fresh-food products, such as, meats, fruits, and vegetables, experience discoloration and loss of nutrients when exposed to high-temperatures. Also, medicines, such as, insulin and vaccines, can lose potency if they are not maintained at the appropriate temperatures. Consequently, the CSC is critical to the growth of global trade and to the worldwide availability of food and health supplies; especially, when considering that the retail food market consists mostly (approximately 65%) …


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


Calibration To Mitigate Near-Field Antennas Effects For A Mimo Radar Imaging System, Ha Hoang, Matthias John, Patrick Mcevoy, Max Ammann Jan 2020

Calibration To Mitigate Near-Field Antennas Effects For A Mimo Radar Imaging System, Ha Hoang, Matthias John, Patrick Mcevoy, Max Ammann

Articles

A calibration method for a high-resolution hybrid MIMO turntable radar imaging system is presented. A line of small metal spheres is employed as a test pattern in the calibration process to measure the position shift caused by undesired antenna effects. The unwanted effects in the antenna near-field responses are analysed, modelled and significantly mitigated based on the symmetry and differences in the responses of the MIMO configuration.


Levitate, Stephen Hargreaves, Isaac Hammonds, Russel Pease, Joseph Morris Jan 2020

Levitate, Stephen Hargreaves, Isaac Hammonds, Russel Pease, Joseph Morris

Williams Honors College, Honors Research Projects

Levitate is designed to create a healthier work environment by providing a way of entertaining a worker while not distracting them. To fulfill this task, the device needs to be interesting and self-sufficient while not being overly flashy. To complete this task, Levitate is designed so that it is able to lift a platform from rest using magnetism and that will be able to stabilize itself using electromagnets. It initiates this process by lifting the permanent magnet using servo motors. Then, the device is able to achieve stability through the use of hall sensors feeding their results to the board …


Kettlebell Ultra, Elissa Peters, Kathryn Wegman, Daniel Basch, Mason Pastorius Jan 2020

Kettlebell Ultra, Elissa Peters, Kathryn Wegman, Daniel Basch, Mason Pastorius

Williams Honors College, Honors Research Projects

This project will consist of an attachment to an average kettlebell that will track the number of repetitions that the user has performed. The device will send this data over Bluetooth to a smart phone application so the user can track their workout accurately.


Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah Apr 2019

Urban Underground Infrastructure Monitoring Iot: The Path Loss Analysis, Abdul Salam, Syed Shah

Faculty Publications

The extra quantities of wastewater entering the pipes can cause backups that result in sanitary sewer overflows. Urban underground infrastructure monitoring is important for controlling the flow of extraneous water into the pipelines. By combining the wireless underground communications and sensor solutions, the urban underground IoT applications such as real time wastewater and storm water overflow monitoring can be developed. In this paper, the path loss analysis of wireless underground communications in urban underground IoT for wastewater monitoring has been presented. It has been shown that the communication range of up to 4 kilometers can be achieved from an underground …


An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam Apr 2019

An Underground Radio Wave Propagation Prediction Model For Digital Agriculture, Abdul Salam

Faculty Publications

Underground sensing and propagation of Signals in the Soil (SitS) medium is an electromagnetic issue. The path loss prediction with higher accuracy is an open research subject in digital agriculture monitoring applications for sensing and communications. The statistical data are predominantly derived from site-specific empirical measurements, which is considered an impediment to universal application. Nevertheless, in the existing literature, statistical approaches have been applied to the SitS channel modeling, where impulse response analysis and the Friis open space transmission formula are employed as the channel modeling tool in different soil types under varying soil moisture conditions at diverse communication distances …


A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak Feb 2019

A Theoretical Model Of Underground Dipole Antennas For Communications In Internet Of Underground Things, Abdul Salam, Mehmet C. Vuran, Xin Dong, Christos Argyropoulos, Suat Irmak

Faculty Publications

The realization of Internet of Underground Things (IOUT) relies on the establishment of reliable communication links, where the antenna becomes a major design component due to the significant impacts of soil. In this paper, a theoretical model is developed to capture the impacts of change of soil moisture on the return loss, resonant frequency, and bandwidth of a buried dipole antenna. Experiments are conducted in silty clay loam, sandy, and silt loam soil, to characterize the effects of soil, in an indoor testbed and field testbeds. It is shown that at subsurface burial depths (0.1-0.4m), change in soil moisture impacts …


Dual Graphene Patch Antenna For Ka Band Satellite Applications, Mohammed Amin Rabah, Mohammed Bekhti Jan 2019

Dual Graphene Patch Antenna For Ka Band Satellite Applications, Mohammed Amin Rabah, Mohammed Bekhti

International Journal of Aviation, Aeronautics, and Aerospace

Currently; grapheme offers a new opportunity to use in space technology and this is due to its amazing properties like conductivity, strength, flexibility and transparency which allows us to exploit new generation of ultra-fast nanoscale components; Since future wireless communication techniques are geared towards the use of the high frequency spectrum and many recent research prove this trend. This letter presents a proposal for design of a dual graphene-based antenna to use in new communication techniques in Ka band, where the proposed antenna can work for uplink and dowlink frequencies at same time since it has return loss less then …


Study Of Physical Layer Security And Teaching Methods In Wireless Communications, Zhijian Xie, Christopher Horne Oct 2018

Study Of Physical Layer Security And Teaching Methods In Wireless Communications, Zhijian Xie, Christopher Horne

KSU Proceedings on Cybersecurity Education, Research and Practice

In most wireless channels, the signals propagate in all directions. For the communication between Alice and Bob, an Eavesdropper can receive the signals from both Alice and Bob as far as the Eavesdropper is in the range determined by the transmitting power. Through phased array antenna with beam tracking circuits or cooperative iteration, the signals are confined near the straight line connecting the positions of Alice and Bob, so it will largely reduce the valid placement of an Eavesdropper. Sometimes, this reduction can be prohibitive for Eavesdropper to wiretap the channel since the reduced space can be readily protected. Two …


Adaptation Of Vt-Dbr Lasers For Lidar, Luke Horowitz Jun 2018

Adaptation Of Vt-Dbr Lasers For Lidar, Luke Horowitz

Master's Theses

Vernier Tuned Distributed Bragg Reflector (VT-DBR) lasers have had great success in the field of Swept-Source Optical Coherence Tomography (SS-OCT) due to their continuous and nearly 40 nm wavelength tuning range in a single longitudinal mode. Fast sweeps allow for real time imaging with micrometer resolution at a distance of a few centimeters. While this laser has proven quite useful as a medical imaging tool via OCT, it has yet to similarly prove itself for general light detection and ranging (LIDAR) applications due to range limitations that arise from a finite laser coherence length. The goal of this thesis is …


The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette Jun 2018

The Design, Building, And Testing Of A Constant On Discreet Jammer For The Ieee 802.15.4/Zigbee Wireless Communication Protocol, Alexandre J. Marette

Master's Theses

As wireless protocols become easier to implement, more products come with wireless connectivity. This latest push for wireless connectivity has left a gap in the development of the security and the reliability of some protocols. These wireless protocols can be used in the growing field of IoT where wireless sensors are used to share information throughout a network. IoT is being implemented in homes, agriculture, manufactory, and in the medical field. Disrupting a wireless device from proper communication could potentially result in production loss, security issues, and bodily harm. The 802.15.4/ZigBee protocol is used in low power, low data rate, …


Design Of An All-Dielectric Sublayer For Enhanced Transmittance In Stacked Antenna Array Applications, Matthew Bester May 2018

Design Of An All-Dielectric Sublayer For Enhanced Transmittance In Stacked Antenna Array Applications, Matthew Bester

Electronic Thesis and Dissertation Repository

In spatially constrained applications, the overlapping of antenna arrays can be unavoidable and its presence can lead to a blockage in the line-of-sight for the underlying antennas. Although previous investigations focused predominantly on the contribution of the ground plane and feed network-which were resolved through the use of frequency selective surfaces and proper feed network design, respectively-it is believed that the ground plane, substrate, and patch regions can emplace a substantial combined impedance. To rectify the transmission through these layers, an all-dielectric implementation is suggested based on the properties of complementary media and Fabry-Perot resonance shifting phenomena. Consequently, both spherical …


Software Defined Radar For Vital Sign Detection, Chandler J. Bauder, James Bates, Steven Engel, James S. Tucker, Fangzhou Liu May 2018

Software Defined Radar For Vital Sign Detection, Chandler J. Bauder, James Bates, Steven Engel, James S. Tucker, Fangzhou Liu

Chancellor’s Honors Program Projects

No abstract provided.


Reconfigurable Antennas Using Liquid Crystalline Elastomers, John Gibson Mar 2018

Reconfigurable Antennas Using Liquid Crystalline Elastomers, John Gibson

FIU Electronic Theses and Dissertations

This dissertation demonstrates the design of reversibly self-morphing novel liquid crystalline elastomer (LCE) antennas that can dynamically change electromagnetic performance in response to temperature. This change in performance can be achieved by programming the shape change of stimuli-responsive (i.e., temperature-responsive) LCEs, and using these materials as substrates for reconfigurable antennas. Existing reconfigurable antennas rely on external circuitry such as Micro-Electro-Mechanical-Systems (MEMS) switches, pin diodes, and shape memory alloys (SMAs) to reconfigure their performance. Antennas using MEMS or diodes exhibit low efficiency due to the losses from these components. Also, antennas based on SMAs can change their performance only once as …