Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Systems and Communications

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu Aug 2017

Gui For Mri-Compatible Neural Stimulator And Recorder, Soo Han Soon, Nishant Babaria, Ranajay Mandal, Zhongming Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are useful tools to analyze brain activities given active stimulation. However, the electromagnetic noise from the MRI distorts the brain signal recording and damages the subject with excessive heat generated on the electrodes attached to the skin. MRI-compatible recording and stimulation systems previously developed at LIBI lab were capable of removing the electromagnetic noise during the imaging process. Previously, the hardware systems had required the integrative software that could control both circuits simultaneously and enable users to easily change recording and stimulation parameters. Graphical user interface (GUI) programmed with computer language informed …


Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad Jan 2014

Applying Spiking Neural Network Simulation To Neuromodulatory Autonomous Robot Control, Cameron Muhammad

Phi Kappa Phi Research Symposium (2012-2016)

In this paper, simulation of the brain based on an artificial spiking neuron model is used to create a self-learning algorithm. The spiking neuron simulation is used to demonstrate a neuromodulation program in which the reward seeking properties of dopamine, the risk-adverse effects of serotonin, and the attention-focusing effects of the cholinergic and noradrenergic systems are applied to a mobile robotic platform as it moves autonomously throughout an environment. External stimuli is recorded by the program as spiking “events” that result in corresponding amounts of dopamine and serotonin influenced spiking patterns. These spiking patterns affect how the robot adapts to …