Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Signal Processing

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban Jan 2024

An Analysis Of Precision: Occlusion And Perspective Geometry’S Role In 6d Pose Estimation, Jeffrey Choate, Derek Worth, Scott Nykl, Clark N. Taylor, Brett J. Borghetti, Christine M. Schubert Kabban

Faculty Publications

Achieving precise 6 degrees of freedom (6D) pose estimation of rigid objects from color images is a critical challenge with wide-ranging applications in robotics and close-contact aircraft operations. This study investigates key techniques in the application of YOLOv5 object detection convolutional neural network (CNN) for 6D pose localization of aircraft using only color imagery. Traditional object detection labeling methods suffer from inaccuracies due to perspective geometry and being limited to visible key points. This research demonstrates that with precise labeling, a CNN can predict object features with near-pixel accuracy, effectively learning the distinct appearance of the object due to perspective …


Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor Oct 2023

Conservative Estimation Of Inertial Sensor Errors Using Allan Variance Data, Kyle A. Lethander, Clark N. Taylor

Faculty Publications

To understand the error sources present in inertial sensors, both the white (time-invariant) and correlated noise sources must be properly characterized. To understand both sources, the standard approach (IEEE standards 647-2006, 952-2020) is to compute the Allan variance of the noise and then use human-based interpretation of linear trends to estimate the separate noise sources present in a sensor. Recent work has sought to overcome the graphical nature and visual-inspection basis of this approach leading to more accurate noise estimates. However, when using noise characterization in a filter, it is important that the noise estimates be not only accurate but …


Live-Sky Gnss Signal Processing Using A Dual-Polarized Antenna Array For Multipath Mitigation, Eric Hahn, Sanjeev Gunawardena, Chris Bartone Jan 2023

Live-Sky Gnss Signal Processing Using A Dual-Polarized Antenna Array For Multipath Mitigation, Eric Hahn, Sanjeev Gunawardena, Chris Bartone

Faculty Publications

Excerpt: Multipath results from reflections of Global navigation satellite signals (GNSS) signals arriving at a receiver that are delayed with respect to the desired line-of-sight (LOS) signals. The delayed signals distort the received LOS signals, thereby causing pseudorange and carrier phase measurement errors. Traditional multipath mitigation techniques include antenna gain pattern shaping (primarily to reduce ground multipath) and correlator gating techniques (such as narrow correlator and double-delta correlator [1]).


Accelerating A Software Defined Satnav Receiver Using Multiple Parallel Processing Schemes, Logan Reich, Sanjeev Gunawardena, Michael Braasch Jan 2023

Accelerating A Software Defined Satnav Receiver Using Multiple Parallel Processing Schemes, Logan Reich, Sanjeev Gunawardena, Michael Braasch

Faculty Publications

Excerpt: Satnav SDRs present many benefits in terms of flexibility and configurability. However, due to the high bandwidth signals involved in satnav SDR processing, the software must be highly optimized for the host platform in order to achieve acceptable runtimes. Modules such as sample decoding, carrier replica generation, carrier wipeoff, and correlation are computationally intensive components that benefit from accelerations.


A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt Jul 2022

A Comparison Of Correlation-Agnostic Techniques For Magnetic Navigation, Clark N. Taylor, Josh Hiatt

Faculty Publications

Navigation using a Global Navigation Satellite System (GNSS) is common for autonomous vehicles (ground or air). Unfortunately, GNSS-based navigation solutions are often susceptible to jamming, interference, and a limited number of satellites. A proposed technique to aid in navigation when a GNSS-based system fails is magnetic navigation - navigation using the Earth's magnetic anomaly field. This solution comes with its own set of problems including the need for quality magnetic maps in every area in which magnetic navigation will be used. Many of the currently available magnetic maps are generated from a combination of dated magnetic surveys, resulting in maps …


Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran Apr 2021

Ion Gnss Software-Defined Radio Metadata Standard, Sanjeev Gunawardena, Thomas Pany, James Curran

Faculty Publications

The past several years have seen a proliferation of software‐defined radio (SDR) data collection systems and processing platforms designed for or applicable to satellite navigation (satnav) applications. These systems necessarily produce datasets in a wide range of different formats. To correctly interpret this SDR data, essential information such as the packed sample format and sampling rate is needed. Communicating this metadata between creators and users has historically been an ad‐hoc, cumbersome, and error‐prone process. To address this issue, the satnav SDR community developed a metadata standard and normative software library to automate this process, thus simplifying the exchange of datasets …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Non-Gnss Smartphone Pedestrian Navigation Using Barometric Elevation And Digital Map-Matching, Daniel Broyles, Kyle J. Kauffman, John F. Raquet, Piotr Smagowski Jul 2018

Non-Gnss Smartphone Pedestrian Navigation Using Barometric Elevation And Digital Map-Matching, Daniel Broyles, Kyle J. Kauffman, John F. Raquet, Piotr Smagowski

Faculty Publications

Pedestrian navigation in outdoor environments where global navigation satellite systems (GNSS) are unavailable is a challenging problem. Existing technologies that have attempted to address this problemoften require external reference signals or specialized hardware, the extra size,weight, power, and cost of which are unsuitable for many applications. This article presents a real-time, self-contained outdoor navigation application that uses only the existing sensors on a smartphone in conjunction with a preloaded digital elevation map. The core algorithm implements a particle filter, which fuses sensor data with a stochastic pedestrian motion model to predict the user’s position. The smartphone’s barometric elevation is then …


Improvements For Vision-Based Navigation Of Small, Fixed-Wing Unmanned Aerial Vehicles, Robert C. Leishman, Jeremy Gray, John F. Raquet, Adam Rutkowski Jul 2018

Improvements For Vision-Based Navigation Of Small, Fixed-Wing Unmanned Aerial Vehicles, Robert C. Leishman, Jeremy Gray, John F. Raquet, Adam Rutkowski

Faculty Publications

Investigating alternative navigation approaches for use when GPS signals are unavailable is an active area of research across the globe. In this paper we focus on the navigation of small, fixed-wing unmanned aerial vehicles (UAVs) that employ vision-based approaches combined with other measurements as a replacement for GPS. We demonstrate with flight test data that vehicle attitude information, derived from cheap, MEMS-based IMUs is sufficient to improve two different types of vision processing algorithms. Secondly, we show analytically and with flight test data that range measurements to one other vehicle with global pose is sufficient to constrain the global drift …