Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2020

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 30 of 31

Full-Text Articles in Signal Processing

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil Dec 2020

Improve The Prototype Of Low-Cost Near-Infrared Diffuse Optical Imaging System, Chen Xu, Mohammed Z. Shakil

Publications and Research

Diffuse Optical Tomography (DOT) and Optical Spectroscopy using near-infrared (NIR) diffused light has demonstrated great potential for the initial diagnosis of tumors and in the assessment of tumor vasculature response to neoadjuvant chemotherapy. The aims of this project are 1) to test the different types of LEDs in the near-infrared range, and design the driving circuit, and test the modulation of LEDs at different frequencies; 2) to test the APDs as a detector, and build the receiver system and compare efficiency with pre-built systems. In this project, we are focusing on creating a low-cost infrared transmission system for tumor and …


Power-Weighted Lpc Formant Estimation, Ruairí De Fréin Nov 2020

Power-Weighted Lpc Formant Estimation, Ruairí De Fréin

Conference papers

A power-weighted formant frequency estimation procedure based on Linear Predictive Coding (LPC) is presented. It works by pre-emphasizing the dominant spectral components of an input signal, which allows a subsequent estimation step to extract formant frequencies with greater accuracy. The accuracy of traditional LPC formant estimation is improved by this new power-weighted formant estimator for different classes of synthetic signals and for speech. Power-weighted LPC significantly and reliably outperforms LPC and variants of LPC at the task of formant estimation using the VTR formants dataset, a database consisting of the Vocal Tract Resonance (VTR) frequency trajectories obtained by human experts …


Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed Nov 2020

Digital And Mixed Domain Hardware Reduction Algorithms And Implementations For Massive Mimo, Najath A. Mohomed

FIU Electronic Theses and Dissertations

Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity.

Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for …


A Simplified Accuracy Enhancement To The Saleh Am/Am Modeling And Linearization Of Solid-State Rf Power Amplifiers, Haider Al-Kanan, Fu Li Oct 2020

A Simplified Accuracy Enhancement To The Saleh Am/Am Modeling And Linearization Of Solid-State Rf Power Amplifiers, Haider Al-Kanan, Fu Li

Electrical and Computer Engineering Faculty Publications and Presentations

The Saleh behavioral model exhibits high prediction accuracy for nonlinearity of traveling-wave tube power amplifiers (TWT-PAs). However, the accuracy of the Saleh model degrades when modeling solid-state power amplifiers (SSPAs) technology. In addition, the polynomial expansion of the Saleh model consists of only odd-order terms as analyzed in this work. This paper proposes a novel model accuracy enhancement for the Saleh amplitude-to-amplitude (AM/AM) model when applied to radio frequency (RF) SSPAs. The proposed model enhancement accounts for the second-order intermodulation distortion, which is an important nonlinearity challenge in wideband wireless communications. The proposed static AM/AM model is a three-parameter rational …


Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney Oct 2020

Cleanpage: Fast And Clean Document And Whiteboard Capture, Jane Courtney

Articles

The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and …


New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Mark Davis, Ruairi De Frein Sep 2020

New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Mark Davis, Ruairi De Frein

Conference papers

This paper introduces a new time-resolved spectral analysis method based on the Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of low Signal-to-noise Ratio (SNR) signals comprising multiple frequency components. One of the challenges of the time-resolved spectral method is that they are limited by the Heisenberg-Gabor uncertainty principle. Consequently, there is a trade-off between the temporal and spectral resolution. Most of the previous studies are time-averaged methods. The proposed method is a parameterisation method which can directly extract the dominant formants. The method is based on a $z$-plane analysis of the poles …


New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Mark Davis, Ruairí De Fréin Aug 2020

New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Mark Davis, Ruairí De Fréin

Articles

This paper introduces a new time-resolved spectral analysis method based on the Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of low Signal-to-noise Ratio (SNR) signals comprising multiple frequency components. One of the challenges of the time-resolved spectral method is that they are limited by the Heisenberg-Gabor uncertainty principle. Consequently, there is a trade-off between the temporal and spectral resolution. Most of the previous studies are time-averaged methods. The proposed method is a parameterisation method which can directly extract the dominant formants. The method is based on a z-plane analysis of the poles …


Electromagnetic Characteristics Of The Soil, Abdul Salam, Usman Raza Aug 2020

Electromagnetic Characteristics Of The Soil, Abdul Salam, Usman Raza

Faculty Publications

The electromagnetic characteristics of the soil are discussed in this chapter. The characteristics of porous bedrock, soil medium, and impacts of rain attenuations are also presented. The models of dielectric soil properties are studied with a rigorous focus on the constitutive parameters of subsurface soil medium. Moreover, the permittivity and wavenumber in soil are explained. In addition, the frequency-dependent dielectric properties such as dispersion in soil, absorption characteristic, and penetration depth versus frequency are reviewed. Furthermore, the effective permittivity of soil–water mixture for through-the soil-propagation mechanism is analyzed thoroughly.


Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza Aug 2020

Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza

Faculty Publications

This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The …


Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well.


Modulation Schemes And Connectivity In Wireless Underground Channel, Abdul Salam, Usman Raza Aug 2020

Modulation Schemes And Connectivity In Wireless Underground Channel, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, a thorough treatment of the modulation schemes for UG Wireless is presented. The effects of soil texture and water content on the capacity of multi-carrier modulation in WUC are discussed. The multi-carrier capacity model results are analyzed. Moreover, the underground MIMO design for underground communications is explained thoroughly. An analysis of medium access in wireless underground is done as well. Furthermore, the soil properties are considered for cross-layer communications of UG wireless. The performance analysis of traditional modulation schemes is also considered. The soil moisture-based modulation approach is also explored in this chapter. The connectivity and diversity …


Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza Aug 2020

Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza

Faculty Publications

The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells.


Wireless Underground Channel Modeling, Abdul Salam, Usman Raza Aug 2020

Wireless Underground Channel Modeling, Abdul Salam, Usman Raza

Faculty Publications

A comprehensive treatment of wireless underground channel modeling is presented in this chapter. The impacts of the soil on bandwidth and path loss are analyzed. A mechanism for the UG channel sounding and multipath characteristics analysis is discussed. Moreover, novel time-domain impulse response model for WUC is reviewed with the explanation of model parameters and statistics. Furthermore, different types of the through-the-soil wireless communications are surveyed. Finally, the chapter concludes with discussion of the UG wireless statistical model and path loss model for through-the-soil wireless communications in decision agriculture. The model presented in this chapter is also validated with empirical …


How Can 5g Make Our Lives Better?, Firas Slewa Dawod Aug 2020

How Can 5g Make Our Lives Better?, Firas Slewa Dawod

English Language Institute

Our lives will be significantly improved with the advent of the new cellular wireless technology due to all its new features and applications. This Poster discusses the main features and application of 5G technology and its positive impact on society, in particular facilitating interactive and smart communities.


Hail Detection Using Dual Polarization Weather Radar, Alfonso Ladino Rincon Aug 2020

Hail Detection Using Dual Polarization Weather Radar, Alfonso Ladino Rincon

English Language Institute

This poster highlights how active remote sensors such as weather radar are completely useful for hail detection given its feature and the information they produce. Hail detection is already well studied by the atmospheric scientific community and dual polarimetric variables values for hail signature are presented according to those advances. Then, a supervised classification technique is showed to illustrated how machine learning can be integrated to radar information for automatic hail detection. However, this fuzzy logic algorithm has the capability to distinguish between meteorological and non-meteorological echoes. This automatic information might help forecasters from National Weather Services – NWS to …


Wideband Satcom Model: Evaluation Of Numerical Accuracy And Efficiency, Andrew J. Knisely, Andrew Terzuoli Aug 2020

Wideband Satcom Model: Evaluation Of Numerical Accuracy And Efficiency, Andrew J. Knisely, Andrew Terzuoli

Faculty Publications

The spectral method is typically applied as a simple and efficient method to solve the parabolic wave equation in phase screen scintillation models. The critical factors that can greatly affect the spectral method accuracy is the uniformity and smoothness of the input function. This paper observes these effects on the accuracy of the finite difference and the spectral methods applied to a wideband SATCOM signal propagation model simulated in the ultra-high frequency (UHF) band. The finite difference method uses local pointwise approximations to calculate a derivative. The spectral method uses global trigonometric interpolants that achieve remarkable accuracy for continuously differentiable …


Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson Jul 2020

Structural Health Monitoring Of Pipelines In Radioactive Environments Through Acoustic Sensing And Machine Learning, Michael Thompson

FIU Electronic Theses and Dissertations

Structural health monitoring (SHM) comprises multiple methodologies for the detection and characterization of stress, damage, and aberrations in engineering structures and equipment. Although, standard commercial engineering operations may freely adopt new technology into everyday operations, the nuclear industry is slowed down by tight governmental regulations and extremely harsh environments. This work aims to investigate and evaluate different sensor systems for real-time structural health monitoring of piping systems and develop a novel machine learning model to detect anomalies from the sensor data. The novelty of the current work lies in the development of an LSTM-autoencoder neural network to automate anomaly detection …


Cup-Net: Compressed Ultrafast Photography Using Convolutional Neural Networks, Matthew Parker Jun 2020

Cup-Net: Compressed Ultrafast Photography Using Convolutional Neural Networks, Matthew Parker

ENGS 88 Honors Thesis (AB Students)

Compressed ultrafast photography (CUP) is a cutting-edge imaging technique that uses a variation of the traditional streak camera to obtain video at 100 billion frames per second with a single exposure. In order to achieve this level of temporal detail, CUP leverages compressed sensing (CS). Compressed sensing theory states that a compressed representation of an image can be directly acquired using a non-adaptive measurement matrix so long as the encoding matrix follows certain properties such as restrictive isometry and incoherence. This compressed representation of the original scene can later be reconstructed back into the original form. CUP applies CS by …


Autoassociative-Heteroassociative Neural Network, Claudia V. Kropas-Hughes, Steven K. Rogers, Mark E. Oxley, Matthew Kabrisky Jun 2020

Autoassociative-Heteroassociative Neural Network, Claudia V. Kropas-Hughes, Steven K. Rogers, Mark E. Oxley, Matthew Kabrisky

AFIT Patents

An efficient neural network computing technique capable of synthesizing two sets of output signal data from a single input signal data set. The method and device of the invention involves a unique integration of autoassociative and heteroassociative neural network mappings, the autoassociative neural network mapping enabling a quality metric for assessing the generalization or prediction accuracy of the heteroassociative neural network mapping.


New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Ruairí De Fréin, Mark Davis Jun 2020

New Robust Lpc-Based Method For Time-Resolved Morphology Of High-Noise Multiple Frequency Signals, Jin Xu, Ruairí De Fréin, Mark Davis

Conference papers

This paper introduces a new time-resolved spectral analysis method based on the Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of low Signal-to-noise Ratio (SNR) signals comprising multiple frequency components. One of the challenges of the time-resolved spectral method is that they are limited by the Heisenberg-Gabor uncertainty principle. Consequently, there is a trade-off between the temporal and spectral resolution. Most of the previous studies are time-averaged methods. The proposed method is a parameterisation method which can directly extract the dominant formants. The method is based on a z-plane analysis of the poles …


Remedying Sound Source Separation Via Azimuth Discrimination And Re-Synthesis, Ruairí De Fréin Jun 2020

Remedying Sound Source Separation Via Azimuth Discrimination And Re-Synthesis, Ruairí De Fréin

Conference papers

Commercially recorded music since the 1950s has been mixed down from many input sound sources to a two-channel reproduction of these sources. The effect of this approach is to assign sources to locations in a stereo field using a pan-position for each source. The Adress algorithm is a popular way of extracting individual music sound sources from a stereo mixture. A drawback of the Adress algorithm is that when time-frequency components in the stereo mixture are shared between two or more sources, calculating the inter-aural intensity scaling parameter for each source for that time-frequency component is challenging. We show how …


Remedying Sound Source Separation Via Azimuth Discrimination And Re-Synthesis, Ruairí De Fréin Jun 2020

Remedying Sound Source Separation Via Azimuth Discrimination And Re-Synthesis, Ruairí De Fréin

Conference papers

Commercially recorded music since the 1950s has been mixed down from many input sound sources to a two- channel reproduction of these sources. The effect of this approach is to assign sources to locations in a stereo field using a pan- position for each source. The Adress algorithm is a popular way of extracting individual music sound sources from a stereo mixture. A drawback of the Adress algorithm is that when time- frequency components in the stereo mixture are shared between two or more sources, calculating the inter-aural intensity scaling parameter for each source for that time-frequency component is challenging. …


Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola Apr 2020

Learning Set Representations For Lwir In-Scene Atmospheric Compensation, Nicholas M. Westing [*], Kevin C. Gross, Brett J. Borghetti, Jacob A. Martin, Joseph Meola

Faculty Publications

Atmospheric compensation of long-wave infrared (LWIR) hyperspectral imagery is investigated in this article using set representations learned by a neural network. This approach relies on synthetic at-sensor radiance data derived from collected radiosondes and a diverse database of measured emissivity spectra sampled at a range of surface temperatures. The network loss function relies on LWIR radiative transfer equations to update model parameters. Atmospheric predictions are made on a set of diverse pixels extracted from the scene, without knowledge of blackbody pixels or pixel temperatures. The network architecture utilizes permutation-invariant layers to predict a set representation, similar to the work performed …


Detection Of Human Vigilance State During Locomotion Using Wearable Fnirs, Masudur R. Siddiquee Mar 2020

Detection Of Human Vigilance State During Locomotion Using Wearable Fnirs, Masudur R. Siddiquee

FIU Electronic Theses and Dissertations

Human vigilance is a cognitive function that requires sustained attention toward change in the environment. Human vigilance detection is a widely investigated topic which can be accomplished by various approaches. Most studies have focused on stationary vigilance detection due to the high effect of interference such as motion artifacts which are prominent in common movements such as walking. Functional Near-Infrared Spectroscopy is a preferred modality in vigilance detection due to the safe nature, the low cost and ease of implementation. fNIRS is not immune to motion artifact interference, and therefore human vigilance detection performance would be severely degraded when studied …


Development Of Gaussian Learning Algorithms For Early Detection Of Alzheimer's Disease, Chen Fang Mar 2020

Development Of Gaussian Learning Algorithms For Early Detection Of Alzheimer's Disease, Chen Fang

FIU Electronic Theses and Dissertations

Alzheimer’s disease (AD) is the most common form of dementia affecting 10% of the population over the age of 65 and the growing costs in managing AD are estimated to be $259 billion, according to data reported in the 2017 by the Alzheimer's Association. Moreover, with cognitive decline, daily life of the affected persons and their families are severely impacted. Taking advantage of the diagnosis of AD and its prodromal stage of mild cognitive impairment (MCI), an early treatment may help patients preserve the quality of life and slow the progression of the disease, even though the underlying disease cannot …


Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew Feb 2020

Measuring Localization Confidence For Quantifying Accuracy And Heterogeneity In Single-Molecule Super-Resolution Microscopy, Hesam Mazidi, Tianben Ding, Arye Nehorai, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, …


Improved Estimation For Saleh Model And Predistortion Of Power Amplifiers Using 1-Db Compression Point, Haider Al Kanan, Xianzhen Yang, Fu Li Jan 2020

Improved Estimation For Saleh Model And Predistortion Of Power Amplifiers Using 1-Db Compression Point, Haider Al Kanan, Xianzhen Yang, Fu Li

Electrical and Computer Engineering Faculty Publications and Presentations

This paper proposes an improved estimation approach for modelling RF power amplifiers (PAs) using the Saleh behavioural model. The proposed approach is appropriate for solid-state PA technologies. The 1-dB compression point of the PA is included in the estimation approach to improve the estimation of the Saleh coefficients. Thus, expressions are derived to describe the relationship between the parameters of the Saleh model and the manufacturing specifications of PAs: gain (G), third-order intercept point (IP3) and 1-dB compression point (P1dB). This method is a simple estimation of a memoryless amplitude-to-amplitude (AM/AM) nonlinearity to benefit RF designers …


A Robust Lpc Filtering Method For Time-Resolved Morphology Of Eeg Activity Analysis, Jin Xu, Mark Davis, Ruairí De Fréin Jan 2020

A Robust Lpc Filtering Method For Time-Resolved Morphology Of Eeg Activity Analysis, Jin Xu, Mark Davis, Ruairí De Fréin

Conference Papers

This paper introduces a new time-resolved spectral analysis method based on Linear Prediction Coding (LPC) method that is particularly suited to the study of the dynamics of EEG (Electroencephalogram) activity. The spectral dynamic of EEG signals can be challenging to analyse as they contain multiple frequency components and are often heavily corrupted by noise. Furthermore, the temporal and spectral resolution that can be achieved is limited by the Heisenberg-Gabor uncertainty principle [1]. The method described here is based on a z-plane analysis of the poles of the LPC which allows us to identify and estimate the frequency of the dominant …


Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang Jan 2020

Coverage Guided Differential Adversarial Testing Of Deep Learning Systems, Jianmin Guo, Houbing Song, Yue Zhao, Yu Jiang

Publications

Deep learning is increasingly applied to safety-critical application domains such as autonomous cars and medical devices. It is of significant importance to ensure their reliability and robustness. In this paper, we propose DLFuzz, the coverage guided differential adversarial testing framework to guide deep learing systems exposing incorrect behaviors. DLFuzz keeps minutely mutating the input to maximize the neuron coverage and the prediction difference between the original input and the mutated input, without manual labeling effort or cross-referencing oracles from other systems with the same functionality. We also design multiple novel strategies for neuron selection to improve the neuron coverage. The …


Calibration To Mitigate Near-Field Antennas Effects For A Mimo Radar Imaging System, Ha Hoang, Matthias John, Patrick Mcevoy, Max Ammann Jan 2020

Calibration To Mitigate Near-Field Antennas Effects For A Mimo Radar Imaging System, Ha Hoang, Matthias John, Patrick Mcevoy, Max Ammann

Articles

A calibration method for a high-resolution hybrid MIMO turntable radar imaging system is presented. A line of small metal spheres is employed as a test pattern in the calibration process to measure the position shift caused by undesired antenna effects. The unwanted effects in the antenna near-field responses are analysed, modelled and significantly mitigated based on the symmetry and differences in the responses of the MIMO configuration.