Open Access. Powered by Scholars. Published by Universities.®

Signal Processing Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

Theses and Dissertations

2020

#antcenter

Articles 1 - 2 of 2

Full-Text Articles in Signal Processing

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Verifying And Improving A Flight Reference System's Performance, Loren E. Myers Mar 2020

Verifying And Improving A Flight Reference System's Performance, Loren E. Myers

Theses and Dissertations

The 746th Test Squadron (746 TS) at Holloman AFB, NM operates the Ultra High Accuracy Reference System (UHARS) as part of its mission positioning and navigation test. This research presents a method for verifying the performance of a flight reference system using a Delta-Position velocity derived from radio navigation positioning measurements. The algorithm presented may utilize Global Positioning System (GPS) or the Locata ground based positioning system. In the latter case, Locata provides a velocity truth independent from GPS. The accuracy of Locata and GPS are assessed and UHARS velocity measurements are characterized both in nominal and GPS denied applications.