Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Power and Energy

Carbon Removal And Optoelectronic Property Tuning In Copper Arsenic Sulfide Thin Films Through Ligand Exchange And Alloying, Louis R. Schroeder, Scott Mcclary, Rakesh Agrawal Aug 2017

Carbon Removal And Optoelectronic Property Tuning In Copper Arsenic Sulfide Thin Films Through Ligand Exchange And Alloying, Louis R. Schroeder, Scott Mcclary, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solution processed thin film solar cells are attractive alternatives to conventional energy sources due to low waste generation, flexibility in substrate choice, and scalability. The novel semiconductor Cu3AsS4 in the enargite phase has a near ideal band gap of 1.4 eV and has earth abundant constituent elements; yet single-junction solar cells have yielded low efficiencies due to a secondary carbonaceous phase present, among other issues. This carbonaceous phase may be eliminated by exchanging the carbonaceous ligands with molecular metal chalcogenides. To characterize the ligand exchanged particles, UV-Vis-NIR spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and …


Polymer-Based Thermoelectric Devices, Stuart W. Hilsmier, Edward P. Tomlinson, Bryan Boudouris Aug 2014

Polymer-Based Thermoelectric Devices, Stuart W. Hilsmier, Edward P. Tomlinson, Bryan Boudouris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, over 50% of all energy generated in the US is lost as waste heat, and thermoelectric generators offer a promising means to recoup some of this energy, if their efficiency is improved. While organic thermoelectric materials lack the efficiency of their inorganic counterparts, they are composed of highly abundant resources and have low temperature processing conditions. Recently, a new class of redox-active polymers, radical polymers, has exhibited high electrical conductivity in an entirely amorphous medium. In addition, these radical polymers have a simple synthetic scheme and can be highly tunable to provide desired electrical properties. In this study, the …


Radical Polymers As Anodic Charge Extraction Layers In Small Molecule Organic Photovoltaic Devices, Krystopher S. Jochem, Aditya G. Baradwaj, Bryan W. Boudouris Aug 2014

Radical Polymers As Anodic Charge Extraction Layers In Small Molecule Organic Photovoltaic Devices, Krystopher S. Jochem, Aditya G. Baradwaj, Bryan W. Boudouris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic photovoltaic (OPV) devices based on the copper (II) phthalocyanine(CuPc)/ fullerene(C60) system are an innovative photovoltaic technology optimal for situations requiring low-cost, transparent, and flexible devices. Furthermore, the high degree of reproducibility of this system allows for the ready study of new OPV technologies. Here, we have used this system to elucidate systematic structure-property-performance relationships for a new OPV anode modifier. The addition of interfacial modifier materials between the organic CuPc/C60 layers and the metallic anode drastically can improve efficiency. Radical polymers are a class of polymers with aliphatic backbones and pendent stabilized radical groups. Here, we …


Can Morphology Tailoring Improve The Open Circuit Voltage Of Organic Solar Cells?, Biswajit Ray, M. S. Lundstrom, Muhammad A. Alam Jan 2012

Can Morphology Tailoring Improve The Open Circuit Voltage Of Organic Solar Cells?, Biswajit Ray, M. S. Lundstrom, Muhammad A. Alam

Birck and NCN Publications

While the effect of interfacial morphology on the short circuit current (ISC) of organic photovoltaic devices (OPVs) is well known, its impact on open circuit voltage (VOC) and fill-factor (FF) are less clear. Since the output power of a solar cell Pout = ISCVOCFF, such understanding is critical for designing high-performance, morphology-engineered OPVs. In this letter, we provide an explicit analytical proof that any effort to radically improve VOC by tailoring bulk heterojunction morphology is futile, because any increase in ISC due to larger interface area is counterbalanced by corresponding increase …