Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Power and Energy

Intelligent Data-Driven Energy Flow Controllers For Renewable Energy And Electrified Transportation Systems, Juan Rafael Nunez Forestieri Nov 2020

Intelligent Data-Driven Energy Flow Controllers For Renewable Energy And Electrified Transportation Systems, Juan Rafael Nunez Forestieri

LSU Doctoral Dissertations

In recent years, large scale deployments of electrical energy generation using renewable sources (RES) such as wind, solar and ocean wave power, along with more sustainable means of transformation have emerged in response to different initiatives oriented toward reducing greenhouse gas emissions. Strategies facilitating the integration of renewable generation into the grid and electric propulsion in transportation systems are proposed in this work.

Chapter 2 investigates the grid-connected operation of a wave energy converter (WEC) along with a hybrid supercapacitor/undersea energy storage system (HESS). A combined sizing and energy management strategy (EMS) based on reinforcement learning (RL) is proposed. Comparisons …


Parallel And Asynchronous Distributed Optimization For Power Systems Operation, Ali Mohammadi Oct 2020

Parallel And Asynchronous Distributed Optimization For Power Systems Operation, Ali Mohammadi

LSU Doctoral Dissertations

Distributed optimization approaches are gaining more attention for solving power systems energy management functions, such as optimal power flow (OPF). Preserving information privacy of autonomous control entities and being more scalable than centralized approaches are two primary reasons for developing distributed algorithms. Moreover, distributed/ decentralized algorithms potentially increase power systems reliability against failures of components or communication links.

In this dissertation, we propose multiple distributed optimization algorithms and convergence performance enhancement techniques to solve the OPF problem. We present a multi-level optimization algorithm, based on analytical target cascading, to formulate and solve a collaborative transmission and distribution OPF problem. This …


Temporal Decomposition For Multi-Interval Optimization In Power Systems, Farnaz Safdarian May 2020

Temporal Decomposition For Multi-Interval Optimization In Power Systems, Farnaz Safdarian

LSU Doctoral Dissertations

Large optimization problems are frequently solved for power systems operation and analysis of electricity markets. Many of these problems are multi-interval optimization with intertemporal constraints. The size of optimization problems depends on the size of the system and the length of the considered scheduling horizon. Growing the length of the scheduling horizon increases the computational burden significantly and might make solving the problem in a required time span impossible. Many simplifications and approximation techniques are applied to reduce the computational complexity of multi-interval scheduling problems and make them solvable in a reasonable time span. Geographical decomposition is presented in the …