Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 54 of 54

Full-Text Articles in Power and Energy

Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng May 2022

Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng

Journal of Electrochemistry

The relationship between the electrochemical activity of fuel cell catalysts and Pt particle size, as well as the catalyst support and co-catalyst is still unclear. In this work, FESEM, XRD, BET, TEM and CV techniques were adopted to investigate the effects of TiO2 anatase (A)/rutile (R) phases content on the electrochemical activity of Pt electrocatalyst. The results showed that the anatase-rutile phase transformation occurred during the heat treatment of TiO2 at 700 ~ 900 oC accompanied by the growth of two-phase crystalline size, and anatase was completely transformed into rutile at 900 oC. TEM results revealed that the …


Electrochemical Synthesis Of Acetylpyrazine, Lin Mao, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang May 2022

Electrochemical Synthesis Of Acetylpyrazine, Lin Mao, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

Acetylpyrazine is naturally presented in hazelnuts, peanuts, and sesame seeds. As an important food additive, it is widely used in baked foods, meat, sesame and tobacco. At the same time, acetylpyrazine is also an important pharmaceutical intermediate, which is used in the syntheses of anti-tuberculosis drugs, anti-tumor, anti-malaria, anti-viral, antibacterial and treatments of epilepsy, pain and Parkinson’s drugs. At present, the synthesis methods of acetylpyrazine include oxidation method, multi-step method and Grignard reagent method, which have the disadvantages of low yield, cumbersome process, severe reaction conditions and high cost. In this study, acetylation of pyrazine was used to synthesize acetylpyrazine …


Electrochemical Voltammetric Behavior Of Sulfur Mustard On The Bare Pt Electrode, Yu-Lin Yang, Jie Sun, Tian Zhou, Ji-Gang Li, Shou-Ping Wei May 2022

Electrochemical Voltammetric Behavior Of Sulfur Mustard On The Bare Pt Electrode, Yu-Lin Yang, Jie Sun, Tian Zhou, Ji-Gang Li, Shou-Ping Wei

Journal of Electrochemistry

The sulfur mustard (bis(2-chloroethyl) sulphide, HD), one of highly toxic chemical weapon agents, can damage the alive tissue cells (such as skin, lung, respiratory mucosa and so on), and cause carcinogenic and mutagenic effects for a long time exposure, which imposes a great threat not only to the human health, but also to the sustainable development of the society. With its convenience, high sensitivity and rapid response, electrochemical technology exhibits considerable potential in the field-deployed detection toward HD, but the related reports are rare. Herein, the electrochemical behavior of HD on the bare Pt electrode was investigated by electrochemical measurements, …


Multi-Scale Simulation Revealing The Decomposition Mechanism Of Electrolyte On Lithium Metal Electrode, Yan-Yan Zhang, Yue Liu, Yi-Ming Lu, Pei-Ping Yu, Wen-Xuan Du, Bing-Yun Ma, Miao Xie, Hao Yang, Tao Cheng Apr 2022

Multi-Scale Simulation Revealing The Decomposition Mechanism Of Electrolyte On Lithium Metal Electrode, Yan-Yan Zhang, Yue Liu, Yi-Ming Lu, Pei-Ping Yu, Wen-Xuan Du, Bing-Yun Ma, Miao Xie, Hao Yang, Tao Cheng

Journal of Electrochemistry

Lithium metal is considered as an ideal anode material for next-generation high energy density batteries with its high specific capacity and low electrode potential. However, the high activity of lithium metal can lead to a series of safety issues. For example, lithium metal will continuously react chemically with the electrolyte, forming unstable the solid electrolyte (SEI) films. In addition, lithium dendrites can be formed during cycling, which can puncture the SEI film and cause short circuits in the battery. These drawbacks greatly hinder the commercial application of lithium metal. To solve the above problems, it is important to understand the …


Adjusting The Alloying Degree Of Pt3Zn To Improve Acid Oxygen Reduction Activity And Stability, Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang Apr 2022

Adjusting The Alloying Degree Of Pt3Zn To Improve Acid Oxygen Reduction Activity And Stability, Tian-En Zhang, Ya-Ni Yan, Jun-Ming Zhang, Xi-Ming Qu, Yan-Rong Li, Yan-Xia Jiang

Journal of Electrochemistry

Proton exchange membrane fuel cell (PEMFC) is a new type of energy device, a relatively excellent way to achieve carbon neutrality. However, due to the relatively slow reaction rate of oxygen reduction reaction (ORR) at the cathode, platinum (Pt) is the key material of the cathode catalyst. However, Pt is a kind of noble metal, and its high cost restricts the PEMFC commercialization process. At present, the main approach is to combine transition metals with Pt to prepare Pt-based alloys and to reduce the use of Pt. Pt-based alloys are excellent catalysts for ORR, improving both the activity and stability, …


Preparation Of Pt@Basrtio3 Nanostructure And Its Properties Towards Photoelectrochemical Ammonia Synthesis, Jing Zhang, Rui-Xia Guo, Jian-Jun Fu, Shi-Bin Yin, Pei-Kang Shen, Xin-Yi Zhang Apr 2022

Preparation Of Pt@Basrtio3 Nanostructure And Its Properties Towards Photoelectrochemical Ammonia Synthesis, Jing Zhang, Rui-Xia Guo, Jian-Jun Fu, Shi-Bin Yin, Pei-Kang Shen, Xin-Yi Zhang

Journal of Electrochemistry

Ammonia is an important industrial raw material and a potential green energy. Using renewable energy to convert nitrogen into ammonia under ambient condition is an attractive method. However, the development of efficient photoelectrochemical ammonia synthesis catalysts remains a challenge. Perovskite such as BaSrTiO3 (BST) is a good photocatalytic material. However, BST is active under ultraviolet light and has a high recombination rate of photogenerated electron-hole pairs. By dispersing precious metals, it can effectively regulate the absorption of sunlight by BST. In this work, we used a two-step method to prepare BST. The H2PtCl6·6H2O …


Effects Of Electrode Shape On Lithiation Process Of Lithium-Ion Battery Electrodes, Shi-Wei Sun, Jian-Jun Nie, Yi-Cheng Song Apr 2022

Effects Of Electrode Shape On Lithiation Process Of Lithium-Ion Battery Electrodes, Shi-Wei Sun, Jian-Jun Nie, Yi-Cheng Song

Journal of Electrochemistry

This paper studies the influence of electrode shape on the lithiation process of lithium ion batteries. Both experimental observation and numerical simulation are employed to investigate the competitive interaction between the diffusion of lithium ions in both solid and liquid phases and the lithium intercalation reaction at the electrode surface. Experimental cells were prepared with the anode and cathode being placed parallel, leaving the latter embracing the former. An experimental device based on CCD camera was set up for in situ observation of electrode lithiation. The lithiation levels of the graphite anodes were estimated according to the observed color profile. …


An Additive Incorporated Non-Nucleophilic Electrolyte For Stable Magnesium Ion Batteries, Mao-Ling Xie, Jun Wang, Chen-Ji Hu, Lei Zheng, Hua-Bin Kong, Yan-Bin Shen, Hong-Wei Chen, Li-Wei Chen Mar 2022

An Additive Incorporated Non-Nucleophilic Electrolyte For Stable Magnesium Ion Batteries, Mao-Ling Xie, Jun Wang, Chen-Ji Hu, Lei Zheng, Hua-Bin Kong, Yan-Bin Shen, Hong-Wei Chen, Li-Wei Chen

Journal of Electrochemistry

Non-nucleophilic electrolytes are promising next-generation highly stable electrolytes for magnesium-ion batteries (MIBs). However, a passivation layer on Mg metal anode usually blocks Mg2+ diffusion, leading to poor reaction kinetics and low Coulombic efficiency of the Mg plating/stripping in these electrolytes. Here we explore the utilization of phenyl disulfide (PDF) as a film-forming additive for non-nucleophilic electrolytes to regulate the interfacial chemistry on Mg metal anode. Phenyl-thiolate generated from the PDF additive was found to suppress the unfavorable surface blocking layer, resulted in a high Coulombic efficiency of up to 99.5% for the Mg plating/stripping process as well as a remarkably …


In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang Mar 2022

In-Situ/Operando57Fe Mössbauer Spectroscopic Technique And Its Applications In Nife-Based Electrocatalysts For Oxygen Evolution Reaction, Jafar Hussain Shah, Qi-Xian Xie, Zhi-Chong Kuang, Ri-Le Ge, Wen-Hui Zhou, Duo-Rong Liu, Alexandre I. Rykov, Xu-Ning Li, Jing-Shan Luo, Jun-Hu Wang

Journal of Electrochemistry

The development of highly efficient and cost-effective electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier to establish effective utilization of renewable energy storage systems and water splitting to produce clean fuel. The current status of the research in developing OER catalysts shows that NiFe-based oxygen evolution catalysts (OECs) have been proven as excellent and remarkable candidates for this purpose. But it is critically important to understand the factors that influence their activity and underlying mechanism for the development of state-of-the-art OER catalysts. Therefore, the development of in-situ/operando characterizations is urgently required to detect key …


In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang Mar 2022

In Situ Characterization Of Electrode Structure And Catalytic Processes In The Electrocatalytic Oxygen Reduction Reaction, Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang

Journal of Electrochemistry

As an electrochemical energy conversion system, fuel cell has the advantages of high energy conversion efficiency and high cleanliness. Oxygen reduction reaction (ORR), as an important cathode reaction in fuel cells, has received extensive attention. At present, the electrocatalysts are still one of the key materials restricting the further commercialization of fuel cells. The fundamental understanding on the catalytic mechanism of ORR is conducive to the development of electrocatalysts with the enhanced activity and high selectivity. This review aims to summarize the in situ characterization techniques used to study ORR. From this perspective, we first briefly introduce the advantages of …


Synchrotron X-Rays Characterizations Of Metal-Air Batteries, Ya-Jie Song, Xue Sun, Li-Ping Ren, Lei Zhao, Fan-Peng Kong, Jia-Jun Wang Mar 2022

Synchrotron X-Rays Characterizations Of Metal-Air Batteries, Ya-Jie Song, Xue Sun, Li-Ping Ren, Lei Zhao, Fan-Peng Kong, Jia-Jun Wang

Journal of Electrochemistry

The rapid development of electric vehicles urgently requires high-energy-density batteries. Recently, metal-air batteries have attracted much attention in industry and academia for their ultra-high theoretical energy densities. However, the practical application of metal-air batteries is severely impeded by multiple drawbacks, including severe side reactions, low energy efficiency, and limited cycle life. Understanding the reaction mechanism of the cell and further developing effective strategies are beneficial for the practical application of metal-air batteries. In the past decade, advanced characterization techniques have accelerated the development of metal-air batteries. In particular, synchrotron radiation-based characterization techniques have been widely applied to the mechanistic study …


Recent Advances In Electrochemical Kinetics Simulations And Their Applications In Pt-Based Fuel Cells, Ji-Li Li, Ye-Fei Li, Zhi-Pan Liu Feb 2022

Recent Advances In Electrochemical Kinetics Simulations And Their Applications In Pt-Based Fuel Cells, Ji-Li Li, Ye-Fei Li, Zhi-Pan Liu

Journal of Electrochemistry

Theoretical simulations of electrocatalysis are vital for understanding the mechanism of the electrochemical process at the atomic level. It can help to reveal the in-situ structures of electrode surfaces and establish the microscopic mechanism of electrocatalysis, thereby solving the problems such as electrode oxidation and corrosion. However, there are still many problems in the theoretical electrochemical simulations, including the solvation effects, the electric double layer, and the structural transformation of electrodes. Here we review recent advances of theoretical methods in electrochemical modeling, in particular, the double reference approach, the periodic continuum solvation model based on the modified Poisson-Boltzmann …


Selective Co2 Reduction To Formate On Heterostructured Sn/Sno2 Nanoparticles Promoted By Carbon Layer Networks, Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen Feb 2022

Selective Co2 Reduction To Formate On Heterostructured Sn/Sno2 Nanoparticles Promoted By Carbon Layer Networks, Xue Teng, Yanli Niu, Shuaiqi Gong, Xuan Liu, Zuofeng Chen

Journal of Electrochemistry

Tin (Sn)-based materials have emerged as promising electrocatalysts for selective reduction of CO2 to formate, but their overall performances are still limited by electrode structures which govern the accessibility to active sites, the electron transfer kinetics, and the catalytic stability. In this study, the heterostructured Sn/SnO2 nanoparticles dispersed by N-doped carbon layer networks (Sn/SnO2@NC) were synthesized by a melt-recrystallization method taking the low melting point of Sn (m.p. 232oC). The N-doped carbon layer networks derived from polydopamine could attract more electrons on the electrocatalyst, serve as conductive agents and protect the ultrafine nanoparticles from agglomeration and …


Magnetic Resonance In Metal-Ion Batteries: From Nmr (Nuclear Magnetic Resonance) To Epr (Electron Paramagnetic Resonance), Bing-Wen Hu, Chao Li, Fu-Shan Geng, Ming Shen Feb 2022

Magnetic Resonance In Metal-Ion Batteries: From Nmr (Nuclear Magnetic Resonance) To Epr (Electron Paramagnetic Resonance), Bing-Wen Hu, Chao Li, Fu-Shan Geng, Ming Shen

Journal of Electrochemistry

Metal-ion batteries have changed our quotidian lives. The research on the electrode materials for metal-ion battery is the key to improve the performance of the battery. Therefore, understanding the structure-performance relationship of the electrode materials can help to improve the energy density and power density of the materials. Magnetic resonance, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR), has been continuously improved during the past three decades, and has gradually become one of the important technologies to study the structure-performance relationship of electrode materials. This paper summarizes the progress of magnetic resonance research from our group on several …


Mass Loading Optimization For Ethylene Glycol Oxidation At Different Potential Regions, Sheng-Nan Sun, Zhi-Chuan Xu Feb 2022

Mass Loading Optimization For Ethylene Glycol Oxidation At Different Potential Regions, Sheng-Nan Sun, Zhi-Chuan Xu

Journal of Electrochemistry

Designing and fabricating the electrocatalysts is attracting more and more attention in recent years due to a global interest in developing techniques for electrochemical energy conversion and storage, as well as elelectro-synthesis of valuable chemicals. The activity is one of the key performance parameters for electrocatalysts, while the observed activity can be affected by mass loading of electrocatalysts. Here, we take cobalt oxide (Co3O4)/graphite paper electrode (Co3O4/GPE) as a model electrode to demon-strate how the mass loading of Co3O4 catalyst influences ethylene glycol (EG) oxidation in alkaline (KOH) by …


Recent Advances In Structural Regulation On Non-Precious Metal Catalysts For Oxygen Reduction Reaction In Alkaline Electrolytes, Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing Feb 2022

Recent Advances In Structural Regulation On Non-Precious Metal Catalysts For Oxygen Reduction Reaction In Alkaline Electrolytes, Xue Wang, Li Zhang, Chang-Peng Liu, Jun-Jie Ge, Jian-Bing Zhu, Wei Xing

Journal of Electrochemistry

Oxygen reduction reaction (ORR) in alkaline electrolytes is an important electrochemical process for metal-air batteries and anion exchange membrane fuel cells (AEMFCs). However, the sluggish kinetics spurs intensive research on searching robust electrocatalysts. Non-precious metal catalysts (NPMCs) that can circumvent the cost and scarcity issues associated with platinum (Pt)-based materials have been pursued and the challenges lie in the performance improvement to rival Pt-based benchmarks. As the composition and structure of the NPMCs have a significant impact on the catalytic performance, precise regulation on the catalyst structure holds great promise to bridge the activity gap between NPMCs and Pt-based benchmarks. …


Facet Dependent Oxygen Evolution Activity Of Spinel Cobalt Oxides, Li-Hua Zhang, Hong-Yuan Chuai, Hai Liu, Qun Fan, Si-Yu Kuang, Sheng Zhang, Xin-Bin Ma Feb 2022

Facet Dependent Oxygen Evolution Activity Of Spinel Cobalt Oxides, Li-Hua Zhang, Hong-Yuan Chuai, Hai Liu, Qun Fan, Si-Yu Kuang, Sheng Zhang, Xin-Bin Ma

Journal of Electrochemistry

Water splitting is a promising technology to produce clean hydrogen if powered by renewable energies, where oxygen evolution is the rate determining step at an anode. Here we adjust the different crystal planes of the cobalt oxides catalyst to expose more effective active sites through a hydrothermal process, so as to improve the reaction activity for oxygen evolution. The samples were well characterized by TEM, SEM and XRD. Among the three synthetic crystal planes (100), (111) and (110) of spinel cobalt oxides, the (100) crystal plane has the highest intrinsic activity. Combining in-situ infrared and DFT calculations, we …


Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su Feb 2022

Structural Degradation Of Ni-Rich Layered Oxide Cathode For Li-Ion Batteries, Jia-Yi Wang, Sheng-Nan Guo, Xin Wang, Lin Gu, Dong Su

Journal of Electrochemistry

Nickel(Ni)-rich layered oxide has been regarded as one of the most important cathode materials for the lithium-ion batteries because of its low cost and high energy density. However, the concerns in safety and durability of this compound are still challenging for its further development. On this account, the in-depth understanding in the structural factors determining its capacity attenuation is essential. In this review, we summarize the recent advances on the degradation mechanisms of Ni-rich layered oxide cathode. Progresses in the structure evolution of Ni-rich oxide are carefully combed in terms of inner evolution, surface evolution, and the property under thermal …


Advances Of Phosphide Promoter Assisted Pt Based Catalyst For Electrooxidation Of Methanol, Meng Li, Li-Gang Feng Jan 2022

Advances Of Phosphide Promoter Assisted Pt Based Catalyst For Electrooxidation Of Methanol, Meng Li, Li-Gang Feng

Journal of Electrochemistry

Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased attention because of its multifunctional active sites, tunable structure and composition, as well as unique physical and chemical properties and efficient multi-composition synergistic effect. Some advances have been made for this catalyst system recently. In the current review, the research progresses of transition metal phosphides (TMPs) in the assisted electrooxidation of methanol including the catalysts fabrication and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMPs has been firstly presented and the catalyst systems based on the different metal centers …


A High-Performance Continuous-Flow Mea Reactor For Electroreduction Co2 To Formate, Pei-Xuan Liu, Lu-Wei Peng, Rui-Nan He, Lu-Lu Li, Jin-Li Qiao Jan 2022

A High-Performance Continuous-Flow Mea Reactor For Electroreduction Co2 To Formate, Pei-Xuan Liu, Lu-Wei Peng, Rui-Nan He, Lu-Lu Li, Jin-Li Qiao

Journal of Electrochemistry

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach to produce liquid fuels and industrial chemicals by utilizing intermittent renewable electricity for mitigating environmental problems. However, the traditional H-type reactor seriously limits the electrochemical performance of CO2RR due to the low CO2 solubility in electrolyte, and high ohmic resistance caused by the large distance between two electrodes, which is unbeneficial for industrial application. Herein, we demonstrated a high-performance continuous flow membranes electrode assembly (MEA) reactor based on a self-growing Cu/Sn bimetallic electrocatalyst in 0.5 mol·L-1 KHCO3 for converting CO2 to formate. …


Oxidative Efficiency Of Ozonation Coupled With Electrolysis For Treatment Of Acid Wastewater, Ze-You Hu, Feng-Yun Xiang, Ji-Qiang Mao, Ya-Lei Ding, Shao-Ping Tong Jan 2022

Oxidative Efficiency Of Ozonation Coupled With Electrolysis For Treatment Of Acid Wastewater, Ze-You Hu, Feng-Yun Xiang, Ji-Qiang Mao, Ya-Lei Ding, Shao-Ping Tong

Journal of Electrochemistry

Establishment of an ozone-based advanced oxidation process (AOPs-O3) for effective treatment of acid wastewater is an important and difficult task. The process of ozonation coupled with electrolysis (electrolysis-ozonation, E-O3) has been reported to effectively degrade pollutants in neutral solution. We studied the efficiency of E-O3 for degradation of acetic acid (HAc, an ozone inert chemical) in acid solution and found that E-O3 had high oxidative efficiency at pH less than 3. For example, 52.2% of 100 mg·L-1 HAc could be removed by E-O3 in 120 min at pH 1.0, but only 2.2% and …


Progress Of Pt-Based Catalysts In Proton-Exchange Membrane Fuel Cells: A Review, Long Huang, Hai-Chao Xu, Bi Jing, Qiu-Xia Li, Wei Yi, Shi-Gang Sun Jan 2022

Progress Of Pt-Based Catalysts In Proton-Exchange Membrane Fuel Cells: A Review, Long Huang, Hai-Chao Xu, Bi Jing, Qiu-Xia Li, Wei Yi, Shi-Gang Sun

Journal of Electrochemistry

Fuel cells are energy conversion devices that convert chemical energy directly into electricity. It has the advantages of high energy density, high utilization efficiency of fuel, clean and noiseless during working. Among all kinds of fuel cells, proton exchange membrane fuel cells (PEMFCs) are most popular since PEMFCs function at near ambient temperature, while their power densities are higher than those of other fuel cells. Currently, Pt-based nanomaterials are still the unreplaceable catalysts in commercialized PEMFCs. The lack of low-cost and high-performance cathode catalysts is still one of key factors that hampers the commercialization of PEMFCs. In this review, the …


Acetate Solutions With 3.9 V Electrochemical Stability Window As An Electrolyte For Low-Cost And High-Performance Aqueous Sodium-Ion Batteries, Dao-Yun Lan, Xiao-Feng Qu, Yu-Ting Tang, Li-Ying Liu, Jun Liu Jan 2022

Acetate Solutions With 3.9 V Electrochemical Stability Window As An Electrolyte For Low-Cost And High-Performance Aqueous Sodium-Ion Batteries, Dao-Yun Lan, Xiao-Feng Qu, Yu-Ting Tang, Li-Ying Liu, Jun Liu

Journal of Electrochemistry

Low-cost and high-safety aqueous sodium-ion batteries have received widespread attention in the field of large-scale energy storage, but the narrow electrochemical stability window (1.23 V) of water limits the energy density of aqueous sodium-ion batteries. The “water-in-salt” strategy which uses the interaction between cations and water molecules in the solution can inhibit water decomposition and broaden the electrochemical stability window of water. In this work, two types of low-cost salts, namely, ammonium acetate (NH4CH3COOH) and sodium acetate (NaCH3COOH), were used to configure a mixed aqueous electrolyte for aqueous sodium-ion batteries. The solution consisted of …


Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun Jan 2022

Synthesis Of Lithium-Rich Manganese-Based Layered Cathode Materials And Study On Its Structural Evolution Of First Cycle Overcharge, Chen-Xu Luo, Chen-Guang Shi, Zhi-Yuan Yu, Ling Huang, Shi-Gang Sun

Journal of Electrochemistry

Lithium-rich manganese-based cathode materials have become one of promising cathode materials due to their low cost and large discharge specific capacity exceeding 250 mAh·g-1. However, their problems such as low coulombic efficiency of first cycle and apparent voltage decay influence commercialization process. The high charging voltage will cause instability of structure and increase the hidden danger of the battery. Therefore, structural evolution of first cycle at higher voltage needs to be further studied. In this work, the precursor was synthesized by the co-precipitation method, and the lithium-rich manganese-based layered cathode materials were prepared by lithium-mixed and high-temperature sintering, and the …