Open Access. Powered by Scholars. Published by Universities.®

Power and Energy Commons

Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Articles 1 - 2 of 2

Full-Text Articles in Power and Energy

Fea Estimation And Experimental Validation Of Solid Rotor And Magnet Eddy Current Loss In Single-Sided Axial Flux Permanent Magnet Machines, Xu Yang Dec 2013

Fea Estimation And Experimental Validation Of Solid Rotor And Magnet Eddy Current Loss In Single-Sided Axial Flux Permanent Magnet Machines, Xu Yang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The rotor and magnet loss in single-sided axial ux permanent magnet (AFPM) machines with non-overlapped windings is studied in this dissertation. Finite element analysis (FEA) estimations of the loss are carried out using both 2D and 3D modeling. The rotor and magnet losses are determined separately for stator slot passing and MMF space harmonics from currents in the stator. The segregation of loss between the solid rotor plate and the magnet is addressed. The eddy current loss reduction by magnet segmentation is discussed as well. Two prototype 24 slot/22 pole single-sided AFPMs, fabricated with both single layer (SL) and double …


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert