Open Access. Powered by Scholars. Published by Universities.®

Electrical & Computer Engineering Faculty Publications

Surface reconstruction

Articles 1 - 2 of 2

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Time-Resolved Reflection High-Energy Electron Diffraction Study Of The Ge(111)-C(2×8)-(1×1) Phase Transition, Xinglin Zeng, Bo Lin, Ibrahim El-Kholy, Hani E. Elsayed-Ali Jan 1999

Time-Resolved Reflection High-Energy Electron Diffraction Study Of The Ge(111)-C(2×8)-(1×1) Phase Transition, Xinglin Zeng, Bo Lin, Ibrahim El-Kholy, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The dynamics of the Ge(111)-c(2×8)-(1×1) phase transition is investigated by 100-ps time-resolved reflection high-energy electron diffraction. A laser pulse heats the surface while a synchronized electron pulse is used to obtain the surface diffraction pattern. Slow heating shows that the adatoms in Ge(111)-c(2×8) start to disorder at ∼510 K and are converted to a disordered adatom arrangement at 573 K. For heating with 100-ps laser pulses, the Ge(111)-c(2×8) reconstructed adatom arrangement starts to disorder at 584±16K, well above the onset temperature of ∼510 K for the disordering of Ge(111)-c(2×8) observed for slow …


Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali Jan 1998

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning is used to clean InP(100) negative electron affinity photocathodes. Reflection high-energy electron diffraction patterns of reconstructed, phosphorus-stabilized, InP(100) surfaces are obtained after cleaning at ∼400 °C. These surfaces produce high quantum efficiency photocathodes (∼8.5%), in response to 632.8 nm light. Without atomic hydrogen cleaning, activation of InP to negative electron affinity requires heating to ∼530 °C. At this high temperature, phosphorus evaporates preferentially and a rough surface is obtained. These surfaces produce low quantum efficiency photocathodes (∼0.1%). The use of reflection high-energy electron diffraction to measure the thickness of the deposited cesium layer during activation by correlating …