Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Effect Of Molecular Side Groups And Local Nanoenvironment On Photodegradation And Its Reversibility, Nicole Quist, Mark Li, Ryan Tollefsen, Michael Haley, John Anthony, Oksana Ostroverkhova Feb 2018

Effect Of Molecular Side Groups And Local Nanoenvironment On Photodegradation And Its Reversibility, Nicole Quist, Mark Li, Ryan Tollefsen, Michael Haley, John Anthony, Oksana Ostroverkhova

Chemistry Faculty Publications

Degradation of organic semiconductors in the presence of oxygen is one of the bottlenecks preventing their wide-spread use in optoelectronic devices. The first step towards such degradation in functionalized pentacene (Pn) derivatives is formation of endoperoxide (EPO), which can either revert back to the parent molecule or proceed to molecule decomposition. We present the study of reversibility of EPO formation through probing the photophysical properties of functionalized fluorinated pentacene (Pn-R-F8) derivatives. Experiments are done in solutions and in films both at the single molecule level and in the bulk. In solutions, degradation of optical absorption and its partial recovery after …


Parameters Affecting The Resistivity Of Lp-Ebid Deposited Copper Nanowires, Gabriel Smith Jan 2018

Parameters Affecting The Resistivity Of Lp-Ebid Deposited Copper Nanowires, Gabriel Smith

Theses and Dissertations--Electrical and Computer Engineering

Electron Beam Induced Deposition (EBID) is a direct write fabrication process with applications in circuit edit and debug, mask repair, and rapid prototyping. However, it suffers from significant drawbacks, most notably low purity. Work over the last several years has demonstrated that deposition from bulk liquid precursors, rather than organometallic gaseous precursors, results in high purity deposits of low resistivity (LPEBID). In this work, it is shown that the deposits resulting from LP-EBID are only highly conductive when deposited at line doses below 25μC/cm. When the dose exceeds this value, the resulting structure is highly porous providing a poor conductive …


Fabrication And Characterization Of Organic-Inorganic Hybrid Perovskite Solar Cells, Hojjatollah Sarvari Jan 2018

Fabrication And Characterization Of Organic-Inorganic Hybrid Perovskite Solar Cells, Hojjatollah Sarvari

Theses and Dissertations--Electrical and Computer Engineering

Solar energy as the most abundant source of energy is clean, non-pollutant, and completely renewable, which provides energy security, independence, and reliability. Organic-inorganic hybrid perovskite solar cells (PSCs) revolutionized the photovoltaics field not only by showing high efficiency of above 22% in just a few years but also by providing cheap and facile fabrication methods.

In this dissertation, fabrication of PSCs in both ambient air conditions and environmentally controlled N2-filled glove-box are studied. Several characterization methods such as SEM, XRD, EDS, Profilometry, four-point probe measurement, EQE, and current-voltage measurements were employed to examine the quality of thin films …