Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji Dec 2020

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji

Graduate Theses and Dissertations

Semiconductor packaging and development is greatly dependent on the magnitude of interconnect and on-chip stress that ultimately limits the reliability of electronic components. Thermomechanical related strains occur because of the coefficient of thermal expansion mismatch from different conjoined materials being assembled to manufacture a device. To curb the effect of thermal expansion mismatch between conjoined parts, studies have been done in integrating compliant structures between dies, solder balls, and substrates. Initial studies have enabled the design and manufacturing of these structures using a photolithography approach which involves a high number of fabrication steps depending on the complexity of the structures …


Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar Dec 2020

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar

Graduate Theses and Dissertations

Numerous industries require electronics to operate reliably in harsh environments, such as extreme high temperatures (HTs), low temperature (LT), radiation rich environments, multi-extreme, etc. This dissertation is focused on two harsh environments: HT and multi-extreme.

The first study is on HT optoelectronics for future high-density power module applications. In the power modules design, galvanic isolation is required to pass through the gate control signal, reject the transient noise, and break the ground loops. The optocoupler, which consists of a lighting emitting diode (LED) and photodetector (PD), is commonly used as the solution of galvanic isolation at room temperatures. There is …


Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo Dec 2020

Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo

Graduate Theses and Dissertations

Photoluminescence (PL) and Electroluminescence (EL) characterization techniques are important tools for studying the optical and electrical properties of (Si)GeSn. Light emission from these PL and EL measurements provides relevant information on material quality, bandgap energy, current density, and device efficiency. Prior to this work, the in-house PL set-up of this lab which involves the use of a commercially-obtained dispersive spectrometer was used for characterizing both GeSn thin film and fabricated devices, but these measurements were limited by issues bordering on low spectral resolution, spectral artifacts, and poor signal-to-noise ratio (SNR) thereby resulting in the possible loss of vital information and …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado Dec 2020

Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado

Graduate Theses and Dissertations

The objective of this thesis is to present a design for a low parasitic inductance, high power density 3-phase inverter using silicon-carbide power modules for traction application in the electric vehicles with a power rating of 350 kW. With the market share of electric vehicles continuing to grow, there is a great opportunity for wide bandgap semiconductors such as silicon carbide (SiC) to improve the efficiency and size of the motor drives in these applications. In order to accomplish this goal, careful design and selection of each component in the system for optimum performance from an electrical, mechanical, and thermal …


Synthesis And Application Of Ceramic Paste For High-Temperature Electronic Packaging, Ardalan Nasiri Jul 2020

Synthesis And Application Of Ceramic Paste For High-Temperature Electronic Packaging, Ardalan Nasiri

Graduate Theses and Dissertations

This dissertation research focused on the synthesis and application of ceramic paste for high-temperature applications. An alumina paste material comprising aluminum dihydric phosphate and alumina powder was developed for high-temperature electronic packaging. Nano aluminum nitride and nano-silica powders were embedded to promote the paste curing process, limit the grain growth, and increase its bond shear strength. The chip-to-substrate bond strength was enhanced and met the MIL-STD requirements for die-attach assembly. Its encapsulation property was improved with fewer cracks compared to similar commercial ceramic encapsulants. The die-attach material and encapsulation properties tested at 500°C showed no defect or additional cracks. Thermal …


Design And Optimization Of Multichip Gan Module Enabling Improved Switching Performance, Asif Imran Emon Jul 2020

Design And Optimization Of Multichip Gan Module Enabling Improved Switching Performance, Asif Imran Emon

Graduate Theses and Dissertations

Wide bandgap semiconductors (SiC & GaN) due to their enhanced performance and superior material properties compared to traditional silicon power devices have become the ultimate choice for future high-performance power electronics energy conversion. GaN high electron mobility transistor (HEMT) offers very fast switching capability enabling the designer to push switching frequency to the MHz range. Traditional device packaging becomes a limiting factor in fully harnessing the benefits offered by these advanced power devices, and thus, improved and advanced packaging structures are a must to bridge the gap between GaN devices and their applications. A co-design, co-optimization method has been followed …


Converter- And Module-Level Packaging For High Power Density And High Efficiency Power Conversion, Amol Rajendrakumar Deshpande Jul 2020

Converter- And Module-Level Packaging For High Power Density And High Efficiency Power Conversion, Amol Rajendrakumar Deshpande

Graduate Theses and Dissertations

Advancements in the converter- and module-level packaging will be the key for the development of the emerging high-power, high power-density, high-eciency power conversion applications, such as traction, shipboards, more-electric-aircraft, and locomotive. Wide bandgap (WBG) devices such as silicon carbide (SiC) MOSFET attract much attention in these applications for their fast switching speeds, resulting in low loss and a consequent possibility for high switching frequency to increase the power density. However, for high-current, high power implementations, WBG devices are still available in small die sizes. Multiple SiC devices need to be connected in parallel to replace a large IGBT die. It …


Reducing Emi In Sic Direct Torque Controlled Motor Drive, Michael Sykes May 2020

Reducing Emi In Sic Direct Torque Controlled Motor Drive, Michael Sykes

Electrical Engineering Undergraduate Honors Theses

This paper covers the comparison between Silicon (Si) vs Silicon Carbide (SiC) for Motor Drive systems and a possible control algorithm to limit the increased Electromagnetic Interference (EMI) caused by using SiC transistors for the inverter. Motor Drive systems need constant improvements if the world is going to move on from machines that emit CO2 and other harmful gases into the Earth’s atmosphere. One reason these electric machines are not commonplace today is because of their efficiency and other problems they may cause. Silicon transistors are the most commonplace transistor around the world today, but advances over the past …


Simultaneous Ohmic Contacts To N And P-Type Silicon Carbide For Future Electric Vehicles, Hayden Hunter May 2020

Simultaneous Ohmic Contacts To N And P-Type Silicon Carbide For Future Electric Vehicles, Hayden Hunter

Electrical Engineering Undergraduate Honors Theses

The paper explores possible metallization schemes to form simultaneous ohmic contacts to n-type and p-type silicon carbide contacts. Silicon carbide has shown promise in revolutionizing the power electronics market due to its increased switching speed, compact design, and higher temperature tolerance when compared to Silicon, the market standard. With the continuing development of silicon carbide technology, higher efficiency in future electric vehicles can be achieved by employing this new technology. This paper discusses theoretical contact formation between metals and semiconductors along with a proposed experiment to create a Ni/Al metallization scheme on both n and p-type contacts simultaneously on a …


Ohmic Contact Metallization For Silicon Carbide In Future Transportation And Aviation Systems, Tanner W. Rice May 2020

Ohmic Contact Metallization For Silicon Carbide In Future Transportation And Aviation Systems, Tanner W. Rice

Electrical Engineering Undergraduate Honors Theses

This paper analyzes metallization stacks in both n-type and p-type used in Silicon Carbide to create Ohmic Contacts. Silicon Carbide has shown its significance in usage as a semiconductor in high temperatures, and other extreme environments compared to its silicon counterpart. Additionally, silicon carbide exhibits many other favorable attributes such as strong radiation hardness, high power capability, and high-temperature tolerance. These attributes translate into great components for use in aviation and other future transportations by increasing reliability in a sector that already requires high reliability. Applications of this material could prove useful in fields such as aviation, among others. This …


Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman May 2020

Design Of Submicron Structured Guided-Mode-Resonance Near-Infrared Polarizer, Marzia Zaman

Graduate Theses and Dissertations

The objective of this research is to design a larger submicron linear polarizer in the near-infrared wavelength range with a wide bandwidth which can be fabricated using the conventional thin-film microfabrication technology to reduce cost. For this purpose, a gold (Au) wire-grid transmission-type transverse-magnetic (TM) polarizer and a silicon (Si) wire-grid reflection-type TM polarizer, were designed using the guided-mode-resonance filter. The Au wire-grid TM polarizer of 700nm grating width and 1200nm grating period has 95% transmittance at 2400nm, more than 1000nm resonance peak bandwidth, and an extinction ratio (ER) of around 300 with a moderated level of sidebands. The 700nm …