Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler Dec 2023

Design, Fabrication And Characterization Of Zero Power Sensor/Harvester For Smart Grid Applications, Zeynel Guler

Mechanical Engineering ETDs

This study presents a flexible sensor/harvester device to be used in both electromagnetic sensing and energy harvesting applications for smart grids. When a current passes through a wire, the sensor detects the magnetic field created by that current. The sensor magnet interacts with the wire magnetic field resulting in a transfer of energy through the piezoelectric cantilever. Piezoelectric, conductive, magnetic, and magnetostrictive composite thin films were prepared to fabricate this device.

Initially, the magnet of the cantilever was optimized considering its shape, thickness, length, taper angle etc. via both simulations and experiments. Peak to peak voltage versus cantilever position graph …


Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li Nov 2023

Carrier Dynamics In Green Iii-Nitride Leds Using Small-Signal Electroluminescence, Xuefeng Li

Optical Science and Engineering ETDs

Solid-state lighting has achieved significant success over the past two decades, but the low quantum efficiency of green LEDs (i.e., the “green gap”) remains a barrier to full red-green-blue (RGB) displays in numerous applications. Combating efficiency reduction in longer-wavelength LEDs requires understanding the relative roles of intrinsic effects (e.g., wave-function overlap, carrier-current density relationship, phase-space filling (PSF)) vs. extrinsic effects (e.g., material degradation due to increased defect density, compositional inhomogeneities, etc.). A systematic study of the carrier dynamics in InGaN/GaN LEDs is very important for understanding the origin of the green gap and for providing solutions to improve the efficiency …


Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal May 2023

Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal

Electrical and Computer Engineering ETDs

Silicon heterojunction solar cell of Heterojunction with Thin Intrinsic Layer (HIT) structure is a commercially available technology, and its market share will significantly increase by the next decade. With such a significant market share, any minor improvement in the device’s overall efficiency can be beneficial three folds - customer return on investment, industry revenue, and the overall carbon footprint (from manufacturing to recycling/ disposing of the device). Conventionally, device optimization for solar cells has been achieved using a hit & trial approach where multiple experiments are done to evaluate the best process conditions and device parameters. This approach has some …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain May 2019

Algorithmic Multi-Color Cmos Avalanche Photodiodes For Smart-Lighting Applications, Md Mottaleb Hossain

Optical Science and Engineering ETDs

Future smart-lighting systems are expected to deliver adaptively color-tunable and high-quality lighting that is energy efficient while also offering integrated visible-light wireless communication services. To enable these systems at a commercial level, inexpensive and fast sensors with spectral-sensing capability are required. CMOS-compatible silicon avalanche photodiodes (APDs) can be an excellent fit to this problem due to their excellent sensitivity, high speeds and cost effectiveness; however, color sensing is a challenge without resorting to expensive spectral filters, as done in commercially. To address this challenge, we have recently designed and modeled a novel CMOS-compatible dual-junction APD. The device outputs two photocurrents …


Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour Nov 2018

Vertical Transport Study Of Iii-V Type-Ii Superlattices, Zahra Taghipour

Optical Science and Engineering ETDs

Type-II strained layer superlattice (T2SL) semiconductors hold great promise for mid- and long-wavelength infrared photodetectors. While T2SL-based materials have advanced significantly in the last three decades, an outstanding challenge to improve the T2SLs is to understand the carrier transport and its limitations, in particular along the superlattice growth layers.

In this dissertation, an overview of the current state-of-the-art InAs/GaSb T2SLs is presented. Fundamental semiconductor device equations and transport properties, including miniband conduction and the drift-diffusion parameters, are reviewed, and the fundamental limiting factors in carrier's transport are discussed. Furthermore, the standard method of electron-beam-induced current technique to measuring these parameters …


Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria Nov 2017

Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria

Electrical and Computer Engineering ETDs

In this work, techniques to isolate thermophotovoltaic (TPV) devices from the growth substrate and their subsequent integration with Chemical Vapor Deposition (CVD) diamond heat spreaders will be discussed, with the envisioned goal of fabricating thermally managed cells. CVD diamond heat spreaders are a great option for thermal management of TPV cells. The key requirement, however, is the bonding of the TPV cell directly onto the diamond wafer without the presence of thick (>350 μm) growth substrates, which can offer significant thermal resistance.

The first approach is to release GaSb epitaxial layers from GaSb substrates. However, this is challenging due …