Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar Dec 2020

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar

Graduate Theses and Dissertations

Numerous industries require electronics to operate reliably in harsh environments, such as extreme high temperatures (HTs), low temperature (LT), radiation rich environments, multi-extreme, etc. This dissertation is focused on two harsh environments: HT and multi-extreme.

The first study is on HT optoelectronics for future high-density power module applications. In the power modules design, galvanic isolation is required to pass through the gate control signal, reject the transient noise, and break the ground loops. The optocoupler, which consists of a lighting emitting diode (LED) and photodetector (PD), is commonly used as the solution of galvanic isolation at room temperatures. There is …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado Dec 2020

Design Of A 350 Kw Silicon Carbide Based 3-Phase Inverter With Ultra-Low Parasitic Inductance, Matthew Feurtado

Graduate Theses and Dissertations

The objective of this thesis is to present a design for a low parasitic inductance, high power density 3-phase inverter using silicon-carbide power modules for traction application in the electric vehicles with a power rating of 350 kW. With the market share of electric vehicles continuing to grow, there is a great opportunity for wide bandgap semiconductors such as silicon carbide (SiC) to improve the efficiency and size of the motor drives in these applications. In order to accomplish this goal, careful design and selection of each component in the system for optimum performance from an electrical, mechanical, and thermal …