Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Investigating The Capacitive Properties Of All-Inorganic Lead Halides Perovskite Solar Cells Using Energy Band Diagrams, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh Osama Abdellatif Dr Jan 2022

Investigating The Capacitive Properties Of All-Inorganic Lead Halides Perovskite Solar Cells Using Energy Band Diagrams, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh Osama Abdellatif Dr

Electrical Engineering

Capacitance response of perovskite solar cells (PSCs) can be oppressed to deduce underlying physical mechanisms, both in the materials at external interfaces and in bulk materials. Accordingly, this paper investigates the Capacitance-Voltage (C-V) characteristic curves of cesium lead halides (CsPbX3: X = I, Br, or Cl) used as an active layer in PSCs. The SCAPS-1D simulator was used to harness the actual device (CsPbX3: X = I Br, or Cl) with material parameters from previous experimental work. The energy-band diagrams, J-V curves, and C-V curves of the three PSC structures were constructed and compared to carry out and investigate their …


Study The C-V Behavior Of Cesium-Lead Halides Perovskite Solar Cells Under Various Simulation Parameters, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh O. Abdellatif Dr Jan 2022

Study The C-V Behavior Of Cesium-Lead Halides Perovskite Solar Cells Under Various Simulation Parameters, Zahraa Ismail, Eman Farouk Sawires, Fathy Zaki Amer, Sameh O. Abdellatif Dr

Electrical Engineering

Capacitance response of perovskite solar cells (PSCs) can be oppressed to deduce underlying physical mechanisms, both in the materials at external interfaces and in bulk materials. Accordingly, this paper investigates the Capacitance-Voltage (C-V) characteristic curves of cesium lead halides (CsPbX3: X = I, Br, or Cl) used as an active layer in PSCs. The SCAPS-1D simulator harnessed the actual device (CsPbX3: X = I Br, or Cl) with material parameters from previous experimental work. Three main simulation parameters were investigated: the thickness of the active layer, the doping, and the defects impacts.


Mohat Tool To Illustrate Diode And Transistor Modes Of Operation Using Ltspice, Getu D. Engdaw Dec 2015

Mohat Tool To Illustrate Diode And Transistor Modes Of Operation Using Ltspice, Getu D. Engdaw

Electrical Engineering

This project develops a tool to identify the modes of operation of diodes and transistors in a circuit. The MoHAT tool receives schematics or circuit files generated from LTspice, and it determines the state of each diode and transistor. This tool illustrates diodes, BJT and MOS regions of operations using text or graphics accordingly. The tool also suggests necessary adjustments to switch from one mode of operation to another upon users request. Furthermore, the tool specifies if a transistor functions in amplification region. The MoHAT tool compares the nodal voltages of an element and determines the mode of operation.


Low-Power Self-Sustaining Schedule Display, Samuel (Sam) August Jun 2011

Low-Power Self-Sustaining Schedule Display, Samuel (Sam) August

Electrical Engineering

The completed project is an Amazon Kindle, powered by a USB solar charger, running a student designed program to display a weekly schedule for a faculty member. The purpose of the project was to design a sustainable electronic schedule display for use outside a faculty office. It was designed in the hopes that faculty members could more easily update their schedules, and possibly allow for students to schedule appointments. The program was designed using Java and the solar-charger was designed using a solar cell, Schottky diode, and a USB to micro-B USB cable.