Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini Oct 2021

Towards Higher Power Factor In Semiconductor Thermoelectrics: Bandstructure Engineering And Potential Barriers, Adithya Kommini

Doctoral Dissertations

To keep up with the current energy demand and to sustain the growth requires efficient use of existing resources. One of the ways to improve efficiency is by converting waste heat to electricity using thermoelectrics. Thermoelectric devices work on the principle of Seebeck effect, where an applied temperature difference across the material results in a potential difference in the material. The possibility of drastic improvements in the efficiency of thermoelectric (TE) devices using semiconductor nanostructured materials renewed interest in thermoelectrics over the last three decades. Introducing confinement, interfaces, and quantum effects using nanostructures for additional control of charge and phonon …


Metasurface Design And Optimization With Adjoint Method, Mahdad Mansouree Sep 2021

Metasurface Design And Optimization With Adjoint Method, Mahdad Mansouree

Doctoral Dissertations

The invention and advancement of optical devices have tremendously changed our life. Devices such as cameras, displays and optical sensors are now an integral part of our lives. Moreover, with the rapid growth in new markets such as virtual reality (VR), augmented reality (AR), autonomous vehicles and internet of things (IoT) the need for optical devices is expected to grow considerably. Recent advances in nano-fabrication techniques have spurred a new wave of interest in optical metasurfaces. Metasurfaces are arrays of wisely selected nano-scattereres that generate desired transformation on the incident light. Metasurfaces provide a new platform for the development of …


Low-Energy Memristors & High-Nonlinearity Selector For Dense Passive Cross-Bar Arrays, Navnidhi K. Upadhyay May 2021

Low-Energy Memristors & High-Nonlinearity Selector For Dense Passive Cross-Bar Arrays, Navnidhi K. Upadhyay

Doctoral Dissertations

Memristor or RRAM (Resistive Random Access Memory) based crossbar array architecture (CBA) is considered a leading contender for the next-generation non-volatile memory (NVM) as well as for future computing paradigms, such as in-memory computing, neuromorphic computing, neural networks, analog computing, reconfigurable computing, etc. Among many other attractive properties, memristors’ simple and dense 3D stackable structure is an essential enabler of these promising applications. However, the simplicity and high density of CBA comes at a price. CBA suffers from the so-called sneak path currents flowing through the unselected cells, which severely affects the read margin, makes CBA more power-hungry, increases the …