Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Comparative Evaluation Of Pid Voltage Mode, Pi Current Mode, Fuzzy And Pwm Based Sliding Mode Control For Dc-Dc Converters, Omar Ellabban, Joeri Van Mierlo Dec 2009

Comparative Evaluation Of Pid Voltage Mode, Pi Current Mode, Fuzzy And Pwm Based Sliding Mode Control For Dc-Dc Converters, Omar Ellabban, Joeri Van Mierlo

Omar Ellabban

This paper presents a comparison between the application of four control techniques in DC-DC converters. PID voltage mode (PID-VM), PI current mode (PI-CM), fuzzy, and PWM based sliding mode (SM) controllers are applied to buck converter. The design procedures of controllers are reviewed. The dynamic performance of these controllers under star-up, steady state, input voltage variation, load current disturbances and EMI spectrum are presented and compared.


Dc-Dc Converter For Harvesting Energy From An Exercise Bike, Henry Ureh, Chris Henry Dec 2009

Dc-Dc Converter For Harvesting Energy From An Exercise Bike, Henry Ureh, Chris Henry

Electrical Engineering

Create an efficient buck-boost converter that adapts to input voltage range from ~3.8V to 70V, and outputs 13.7V DC, the voltage required by a charge controller to charge a battery. The energy stored in the battery will be supplied back to the grid.

The cost of energy saved by the converter should eventually cover the initial price of the converter. The converter should help reduce the net power consumption of the exercise machines used in the Cal Poly gym


X-Ray Photoemission Analysis Of Chemically Treated Gate Semiconductor Surfaces For Radiation Detector Applications, A. J. Nelson, A. M. Conway, B. W. Sturm, E. M. Behymer, C. E. Reinhardt, R. J. Nikolic, S. A. Payne, G. Pabst, K. C. Mandal Jul 2009

X-Ray Photoemission Analysis Of Chemically Treated Gate Semiconductor Surfaces For Radiation Detector Applications, A. J. Nelson, A. M. Conway, B. W. Sturm, E. M. Behymer, C. E. Reinhardt, R. J. Nikolic, S. A. Payne, G. Pabst, K. C. Mandal

Faculty Publications

No abstract provided.


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza Jun 2009

5-10 Ghz Aln Contour-Mode Nanoelectromechanical Resonators, Matteo Rinaldi, Chiara Zuniga, Gianluca Piazza

Matteo Rinaldi

This paper reports on the design and experimental verification of Super High Frequency (SHF) laterally vibrating NanoElctroMechanical (NEMS) resonators. For the first time, AlN piezoelectric nanoresonators with multiple frequencies of operation ranging between 5 and 10 GHz have been fabricated on the same chip and attained the highest f-Q product (4.6E12 Hz) ever reported in AlN contour-mode devices. These piezoelectric NEMS resonators are the first of their class to demonstrate on-chip sensing and actuation of nanostructures without the need of cumbersome or power consuming excitation and readout systems. Effective piezoelectric activity has been demonstrated in thin AlN films having vertical …


Analysis & Design Of Improved Multiphase Interleaving Dc-Dc Converter With Input-Output Bypass Capacitor, Rudi Rudianto Jun 2009

Analysis & Design Of Improved Multiphase Interleaving Dc-Dc Converter With Input-Output Bypass Capacitor, Rudi Rudianto

Master's Theses

As the transistor count per chip in computer microprocessors surpasses one billion, the semiconductor industry has become more and more concerned with meeting processor’s power requirements. This poses a design challenge for the power supply module, especially when the processor operates at low voltage range. For example, the electrical requirement for the newest Intel microprocessors has exceeded 100A with an input voltage of approximately 1V. To overcome this problem, multiphase DC-to-DC converters encased in a voltage regulator module (VRM) have become the standard means of supplying power to computer microprocessor.

This study proposes a new topology for the multiphase DC-to-DC …


Low Voltage, Low Power, Bulk-Driven Amplifier, Shama Huda May 2009

Low Voltage, Low Power, Bulk-Driven Amplifier, Shama Huda

Electrical Engineering Undergraduate Honors Theses

The importance of low voltage and low powered electronics is increasing with advances in medical electronics. This branch of electronics specifically requires low voltage and low power to make efficient innovative medical equipment. Low power electronics are also desirable because it conserves energy and power. This paper proposes a design of a differential in - differential our amplifier that uses a bulk-driven differential pair for the input pair. In addition, it also used bulk-driven current mirrors for the tail current sink and the active loads. The bulkdriven technique helps to achieve the low voltage design. 90nm CMOS technology was considered …


A Mems Multi-Cantilever Variable Capacitor On Metamaterial, Luke A. Rederus Feb 2009

A Mems Multi-Cantilever Variable Capacitor On Metamaterial, Luke A. Rederus

Theses and Dissertations

Negative refractive index materials are an example of metamaterials that are becoming increasingly popular. Research into these metamaterials could possibly be the first steps toward bending electromagnetic radiation (i.e., microwaves, light, etc.) around an object or person. Split ring resonators (SRR) are classified as metamaterials that create an artificial magnetic response from materials with no inherent magnetic properties. Once fabricated, an SRR has a specific resonant frequency due to its permanent geometry. This research introduces a new concept of using a variable capacitive micro- electro-mechanical system (MEMS) device located at the gap of an SRR to mechanically alter the capacitance …


Novel Biconical Antenna Configuration With Directive Radiation, M. Shahpari, F. H. Kashani, Hossein Ameri Mahabadi Jan 2009

Novel Biconical Antenna Configuration With Directive Radiation, M. Shahpari, F. H. Kashani, Hossein Ameri Mahabadi

Hossein Ameri Mahabadi

In this paper a novel biconical antenna geometry has been proposed that has directive radiation pattern, higher gain and enhanced front to back ratio. Wide band performance is another characteristic of this new antenna.


Assemble A Ku-Band Frequency Synthesizer, Hossein Ameri Mahabadi, M. Moghavvemi Jan 2009

Assemble A Ku-Band Frequency Synthesizer, Hossein Ameri Mahabadi, M. Moghavvemi

Hossein Ameri Mahabadi

This straightforward design shows how to assemble commercial components into a low-noise 14.4-to-15.5-GHz frequency synthesizer with 625-kHz tuning steps for digital microwave radio systems.


Vlsi Implementation Of High Resolution High Speed Low Latency Pipeline Floating Point Adder/Subtractor For Fft Applications, Rozita Teymourzadeh, Burhan Yeop Majlis, Mok Vh, Masuri Othman Dec 2008

Vlsi Implementation Of High Resolution High Speed Low Latency Pipeline Floating Point Adder/Subtractor For Fft Applications, Rozita Teymourzadeh, Burhan Yeop Majlis, Mok Vh, Masuri Othman

Dr. Rozita Teymourzadeh, CEng.

This paper presents on-chip implementation of high speed low latency floating point adder /subtractor with high accuracy performance for FFT in OFDM transceiver. However due to high performance and high resolution, the floating point adder is matched with power network applications as well. The design was implemented for 32-bit pipelined adder/subtractor which satisfied IEEE-754 Standard for floating -point Arithmetic. The design is focused on the trade-off between the latency and speed improvement as well as resolution and silicon area for the chip implementation. In order to reduce the critical path and decrease the latency, the novel structure was designed and …