Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 12 of 12

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov Jan 2024

Photoluminescence Of Beryllium-Related Defects In Gallium Nitride, Mykhailo Vorobiov, Mykhailo Vorobiov

Theses and Dissertations

This study explores the potential of beryllium (Be) as an alternative dopant to magnesium (Mg) for achieving higher hole concentrations in gallium nitride (GaN). Despite Mg prominence as an acceptor in optoelectronic and high-power devices, its deep acceptor level at 0.22 eV above the valence band limits its effectiveness. By examining Be, this research aims to pave the way to overcoming these limitations and extend the findings to aluminum nitride and aluminum gallium nitride (AlGaN) alloy. Key contributions of this work include. i)Identification of three Be-related luminescence bands in GaN through photoluminescence spectroscopy, improving the understanding needed for further material …


Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt May 2022

Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt

McKelvey School of Engineering Theses & Dissertations

In nuclear science experiments it is usually necessary to determine the type of radiation, its energy and direction with considerable accuracy. The detection of neutrons and discriminating them from gamma rays is particularly difficult. A popular method of doing so is to measure characteristics intrinsic to the pulse shape of each radiation type in order to perform pulse-shape discrimination (PSD).

Historically, PSD capable systems have been designed with two approaches in mind: specialized analog circuitry, or digital signal processing (DSP). In this work we propose a PSD capable circuit topology using techniques from both the analog and DSP domains. We …


Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid Feb 2022

Tailoring Interfaces And Composition For Stable And Efficient Perovskite Solar Cells, Hamza Javaid

Doctoral Dissertations

Metal halide perovskite solar cells (PSCs) have revolutionized the field of thin film photovoltaics. Within a decade, the power conversion efficiencies (PCEs) have increased at a phenomenal rate, rising from 3.8% to more than 25% in single-junction devices, moving them ahead of the current silicon-based technology. The high efficiencies of perovskite solar cells (PSCs) and their other unique properties arise from a combination of organic and inorganic components and electronic-ionic conduction, making them excellent candidates for a plethora of applications. However, PSCs face a significant—and ironic—roadblock to commercialization: these light-harvesting materials degrade under sunlight—the very condition they would need …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole Mar 2020

Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole

Doctoral Dissertations

This dissertation describes the synthesis and characterization of functional optoelectronically active materials. Synthetic techniques were used to prepare polymers containing perylene diimide (PDI) or tetraphenylethylene (TPE) moieties in the polymer backbone. PDI-based structures were prepared with embedded cationic or zwitterionic moieties intended to tailor organic/inorganic interfaces in thin film photovoltaic devices. The aggregation-induced emission (AIE)-active TPE polymers were synthesized to study how AIE properties evolve in π-conjugated polymers. The syntheses discussed here focused on modulation of molecular architecture to give rise to materials with tailored optoelectronic properties. Chapter 1 provides a brief overview of the field of organic electronics and …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu May 2018

Surface Reaction And Diffusion Kinetics In Semiconducting Metal Oxide Film Gas Sensors, Aravind Reghu

Electronic Theses and Dissertations

Chemiresistive metal oxide gas sensors based on materials such as SnO2, ZnO, and TiO2, have been investigated extensively by many researchers for a wide range of applications. The band bending model, based on the surface chemistry of highly reactive ionosorbed species (O2- or O-) and the semiconducting material properties of SnO2, TiO2 and ZnO, adequately predicts the dependence of the change in sensor conductivity (Δσ) as a function of target gas pressure and temperature. However, the band bending model is not applicable to gas sensors based on reducible oxides …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …