Open Access. Powered by Scholars. Published by Universities.®

Controls and Control Theory Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Controls and Control Theory

Mathematical Programming Approach For The Design Of Satellite Power Systems, Allen Flath Iii Jan 2019

Mathematical Programming Approach For The Design Of Satellite Power Systems, Allen Flath Iii

Theses and Dissertations--Electrical and Computer Engineering

Satellite power systems can be understood as islanded dc microgrids supplied by specialized and coordinated solar cell arrays augmented by electrochemical battery systems to handle high-power loads and periods of eclipse. The periodic availability of power, the limited capacity of batteries, and the dependence of all mission service on power consumption create a unique situation in which temporal power and energy scarcity exist. A multi-period model of an orbital satellite power system’s performance over a mission’s duration can be constructed. A modular power system architecture is used to characterize the system’s constraints. Using mathematical programming, an optimization problem can be …


Contributions To Hybrid Power Systems Incorporating Renewables For Desalination Systems, Nasser Alawhali Jan 2018

Contributions To Hybrid Power Systems Incorporating Renewables For Desalination Systems, Nasser Alawhali

Theses and Dissertations--Electrical and Computer Engineering

Renewable energy is one of the most reliable resource that can be used to generate the electricity. It is expected to be the most highly used resource for electricity generation in many countries in the world in the next few decades. Renewable energy resources can be used in several purposes. It can be used for electricity generation, water desalination and mining. Using renewable resources to desalinate the water has several advantages such as reduce the emission, save money and improve the public health. The research described in the thesis focuses on the analysis of using the renewable resources such as …


Stability Analysis And Design Of A Tracking Filter For Variable Frequency Applications, Pranav Aramane Jan 2018

Stability Analysis And Design Of A Tracking Filter For Variable Frequency Applications, Pranav Aramane

Theses and Dissertations--Electrical and Computer Engineering

The work presented in this thesis is a frequency adaptive tracking filter that can be used in exact tracking of power frequencies and rejection of unwanted harmonics introduced during power disturbances. The power synchronization process includes power converters and other equipment that have many non-linear components that introduce unwanted harmonics. This new design is motivated by the requirement of a filter that can filter all the harmonics and exactly track a rapidly varying fundamental frequency with little time delay and phase error. This thesis analyzes the proposed filter mathematically based on Lyapunov theory and simulations are presented to show the …


A Lithium Battery Current Estimation Technique Using An Unknown Input Observer, Daniel Cambron Jan 2016

A Lithium Battery Current Estimation Technique Using An Unknown Input Observer, Daniel Cambron

Theses and Dissertations--Electrical and Computer Engineering

Current consumption measurements are useful in a wide variety of applications, including power monitoring and fault detection within a lithium battery management system (BMS). This measurement is typically taken using either a shunt resistor or a Hall-effect current transducer. Although both methods have achieved accurate current measurements, shunt resistors have inherent power loss and often require isolation circuitry, and Hall-effect sensors are generally expensive. This work explores a novel alternative to sensing battery current by measuring terminal voltages and cell temperatures and using an unknown input observer (UIO) to estimate the battery current. An accurate model of a LiFePO4 …


Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans Jan 2016

Small Satellite Noncommutative Rotation Sequence Attitude Control Using Piezoelectric Actuators, Joshua L. Evans

Theses and Dissertations--Electrical and Computer Engineering

Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite …


Average-Value Modeling Of Hysteresis Current Control In Power Electronics, Hanling Chen Jan 2015

Average-Value Modeling Of Hysteresis Current Control In Power Electronics, Hanling Chen

Theses and Dissertations--Electrical and Computer Engineering

Hysteresis current control has been widely used in power electronics with the advantages of fast dynamic response under parameter, line and load variation and ensured stability. However, a main disadvantage of hysteresis current control is the uncertain and varying switching frequency which makes it difficult to form an average-value model. The changing switching frequency and unspecified switching duty cycle make conventional average-value models based on PWM control difficult to apply directly to converters that are controlled by hysteresis current control.

In this work, a new method for average-value modeling of hysteresis current control in boost converters, three-phase inverters, and brushless …


Multi-Domain, Multi-Objective-Optimization-Based Approach To The Design Of Controllers For Power Electronics, Jing Shang Jan 2014

Multi-Domain, Multi-Objective-Optimization-Based Approach To The Design Of Controllers For Power Electronics, Jing Shang

Theses and Dissertations--Electrical and Computer Engineering

Power converter has played a very important role in modern electric power systems. The control of power converters is necessary to achieve high performance. In this study, a dc-dc buck converter is studied. The parameters of a notional proportional-integral controller are to be selected. Genetic algorithms (GAs), which have been widely used to solve multi-objective optimization problems, is used in order to locate appropriate controller design. The control metrics are specified as phase margin in frequency domain and voltage error in time-domain. GAs presented the optimal tradeoffs between these two objectives. Three candidate control designs are studied in simulation and …


Model Analysis And Predictive Control Of Double Electrode Submerged Arc Welding Process For Fillet Joints With Root Opening, Yi Lu Jan 2014

Model Analysis And Predictive Control Of Double Electrode Submerged Arc Welding Process For Fillet Joints With Root Opening, Yi Lu

Theses and Dissertations--Electrical and Computer Engineering

Submerged Arc Welding (SAW) for fillet joints is one of the major applications in the shipbuilding industry. Due to the requirement for the weld size, a sufficient amount of metal must be deposited. In conventional SAW process, the heat input is proportional to the amount of metal melted and is thus determined by the required weld size. To meet this requirement, an excessive amount of heat is applied causing large distortions on the welded structures whose follow-up straightening is highly costly. In order to reduce the needed heat input, Double-Electrode (DE) technology has been practiced creating the Double-Electrode SAW (DE-SAW) …


Multifrequency Averaging In Power Electronic Systems, Fei Pan Jan 2014

Multifrequency Averaging In Power Electronic Systems, Fei Pan

Theses and Dissertations--Electrical and Computer Engineering

Power electronic systems have been widely used in the electrical power processing for applications with power levels ranging from less than one watt in battery-operated portable devices to more than megawatts in the converters, inverters and rectifiers of the utility power systems. These systems typically involve the passive elements such as inductors, capacitors, and resistors, the switching electronic components such as IGBTs, MOSFETS, and diodes, and other electronic circuits. Multifrequency averaging is one of the widely used modeling and simulation techniques today for the analysis and design of power electronic systems. This technique is capable of providing the average behavior …


Measurement And Modeling Of Humidity Sensors, Jingbo Tong Jan 2014

Measurement And Modeling Of Humidity Sensors, Jingbo Tong

Theses and Dissertations--Electrical and Computer Engineering

Humidity measurement has been increasingly important in many industries and process control applications. This thesis research focus mainly on humidity sensor calibration and characterization. The humidity sensor instrumentation is briefly described. The testing infrastructure was designed for sensor data acquisition, in order to compensate the humidity sensor’s temperature coefficient, temperature chambers using Peltier elements are used to achieve easy-controllable stable temperatures. The sensor characterization falls into a multivariate interpolation problem. Neuron networks is tried for non-linear data fitting, but in the circumstance of limited training data, an innovative algorithm was developed to utilize shape preserving polynomials in multiple planes in …


Power Control Of Single-Stage Pv Inverter For Distribution System Volt-Var Optimization, Xiao Liu Jan 2013

Power Control Of Single-Stage Pv Inverter For Distribution System Volt-Var Optimization, Xiao Liu

Theses and Dissertations--Electrical and Computer Engineering

The output power variability of intermittent renewable sources can cause significant fluctuations in distribution system voltages. A local linear controller that exploits the capability of a photovoltaic inverter to provide both real and reactive power is described. This controller substitutes reactive power for real power when fluctuations in the output of the photovoltaic source are experienced. In this way, the inverter can help mitigate distribution system voltage fluctuations. In order to provide real and reactive to the grid, a three-phase grid-connected single-stage photovoltaic system with maximum power point tracking and power control is described. A method of reducing the current …