Open Access. Powered by Scholars. Published by Universities.®

Biomedical Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson Dec 2013

Analysis, Segmentation And Prediction Of Knee Cartilage Using Statistical Shape Models, Joseph Michael Johnson

Doctoral Dissertations

Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from …


A Novel Signal Processing Method For Intraoperative Neurophysiological Monitoring In Spinal Surgeries, Krishnatej Vedala Nov 2013

A Novel Signal Processing Method For Intraoperative Neurophysiological Monitoring In Spinal Surgeries, Krishnatej Vedala

FIU Electronic Theses and Dissertations

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Jul 2013

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Abhijit Saxena

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …


Automated Channel Assessment For Single Chip Medradio Transceivers, Mark Alexander Hillig Jun 2013

Automated Channel Assessment For Single Chip Medradio Transceivers, Mark Alexander Hillig

Dissertations and Theses

Modern implantable and body worn medical devices leverage wireless telemetry to improve patient experience and expand therapeutic options. Wireless medical devices are subject to a unique set of regulations in which monitoring of the available frequency spectrum is a requirement. To this end, implants use software protocols to assess the in-band activity to determine which channel should be used. These software protocols take valuable processing time and possibly degrade the operational lifetime of the battery. Implantable medical devices often take advantage of a single chip transceiver as the physical layer for wireless communications. Embedding the channel assessment task in the …


Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang Jan 2013

Activity Intent Recognition Of The Torso Based On Surface Electromyography And Inertial Measurement Units, Zhe Zhang

Masters Theses 1911 - February 2014

This thesis presents an activity mode intent recognition approach for safe, robust and reliable control of powered backbone exoskeleton. The thesis presents the background and a concept for a powered backbone exoskeleton that would work in parallel with a user. The necessary prerequisites for the thesis are presented, including the collection and processing of surface electromyography signals and inertial sensor data to recognize the user’s activity. The development of activity mode intent recognizer was described based on decision tree classification in order to leverage its computational efficiency. The intent recognizer is a high-level supervisory controller that belongs to a three-level …


Multi-Mode Self-Referencing Surface Plasmon Resonance Sensors, Jing Guo Jan 2013

Multi-Mode Self-Referencing Surface Plasmon Resonance Sensors, Jing Guo

Theses and Dissertations--Electrical and Computer Engineering

Surface-plasmon-resonance (SPR) sensors are widely used in biological, chemical, medical, and environmental sensing. This dissertation describes the design and development of dual-mode, self-referencing SPR sensors supporting two surface-plasmon modes (long- and short-range) which can differentiate surface binding interactions from bulk index changes at a single sensing location. Dual-mode SPR sensors have been optimized for surface limit of detection (LOD). In a wavelength interrogated optical setup, both surface plasmons are simultaneously excited at the same location and incident angle but at different wavelengths. To improve the sensor performance, a new approach to dual-mode SPR sensing is presented that offers improved differentiation …


Framework For Simulation Of Heterogeneous Mpsoc For Design Space Exploration, Bisrat Tafesse, Venkatesan Muthukumar Jan 2013

Framework For Simulation Of Heterogeneous Mpsoc For Design Space Exploration, Bisrat Tafesse, Venkatesan Muthukumar

Electrical & Computer Engineering Faculty Research

Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC (MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore there exists a need to develop …