Open Access. Powered by Scholars. Published by Universities.®

Biomedical Commons

Open Access. Powered by Scholars. Published by Universities.®

Washington University in St. Louis

Biomechanics

Articles 1 - 2 of 2

Full-Text Articles in Biomedical

New Tools For Viscoelastic Spectral Analysis, With Application To The Mechanics Of Cells And Collagen Across Hierarchies, Behzad Babaei Aug 2016

New Tools For Viscoelastic Spectral Analysis, With Application To The Mechanics Of Cells And Collagen Across Hierarchies, Behzad Babaei

McKelvey School of Engineering Theses & Dissertations

Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical responses of materials and structures. For biological tissues, these spectra must usually be estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging because the inverse problem is expensive computationally. We present here (1) an efficient algorithm and (2) a quasi-linear model that enable rapid identification of the viscoelastic relaxation spectra of both linear and nonlinear materials. We then apply these methods to develop fundamental insight into the mechanics of collagenous and fibrotic tissues.

The first algorithm, which we term the discrete spectral approach, is fast enough to …


Mechanics Of Early Retina And Lens Development In The Embryo, Alina Oltean May 2016

Mechanics Of Early Retina And Lens Development In The Embryo, Alina Oltean

McKelvey School of Engineering Theses & Dissertations

Mechanical forces play an essential role in morphogenesis, the shaping of embryonic structures. This research focuses mainly on eye development, a problem that has been studied for decades using a variety of approaches. However, the mechanics of the early stages of eye formation remain incompletely understood.

The embryonic eyes begin as bilateral protrusions called optic vesicles (OVs) that grow outward from the anterior end of the brain tube. The optic vesicles contact and adhere to the overlying surface ectoderm (SE) via extracellular matrix (ECM). Then, both layers thicken in the region of contact to form the retinal and lens placodes, …