Open Access. Powered by Scholars. Published by Universities.®

Biomedical Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biomedical

The Hsp90 Inhibitor, Auy-922, Protects And Repairs Human Lung Microvascular Endothelial Cells From Hydrochloric Acid-Induced Endothelial Barrier Dysfunction, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Betsy Gregory, John D. Catravas Jan 2021

The Hsp90 Inhibitor, Auy-922, Protects And Repairs Human Lung Microvascular Endothelial Cells From Hydrochloric Acid-Induced Endothelial Barrier Dysfunction, Ruben M.L. Colunga Biancatelli, Pavel Solopov, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Exposure to hydrochloric acid (HCl) leads acutely to asthma-like symptoms, acute respiratory distress syndrome (ARDS), including compromised alveolo-capillary barrier, and respiratory failure. To better understand the direct effects of HCl on pulmonary endothelial function, we studied the characteristics of HCl-induced endothelial barrier dysfunction in primary cultures of human lung microvascular endothelial cells (HLMVEC), defined the involved molecular pathways, and tested the potentially beneficial effects of Heat Shock Protein 90 (HSP90) inhibitors. HCl impaired barrier function in a time- and concentration-dependent manner and was associated with activation of Protein Kinase B (AKT), Ras homolog family member A (RhoA) and myosin light …


The Antitumor Effects Of Plasma-Activated Saline On Muscle-Invasive Bladder Cancer Cells In Vitro And In Vivo Demonstrate Its Feasibility As A Potential Therapeutic Approach, Hao Zhang, Jishen Zhang, Bo Guo, Hailan Chen, Dehui Xu, Michael G. Kong Jan 2021

The Antitumor Effects Of Plasma-Activated Saline On Muscle-Invasive Bladder Cancer Cells In Vitro And In Vivo Demonstrate Its Feasibility As A Potential Therapeutic Approach, Hao Zhang, Jishen Zhang, Bo Guo, Hailan Chen, Dehui Xu, Michael G. Kong

Bioelectrics Publications

Muscle-invasive bladder cancer (MIBC) is a fast-growing and aggressive malignant tumor in urinary system. Since chemotherapy and immunotherapy are only useable with a few MIBC patients, the clinical treatment of MIBC still faces challenges. Here, we examined the feasibility of plasma-activated saline (PAS) as a fledgling therapeutic strategy for MIBC treatment. Our data showed that plasma irradiation could generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in saline. In vivo tests revealed that pericarcinomatous tissue injection with PAS was effective at preventing subcutaneous bladder tumor growth, with no side effects to the visceral organs after …


Comprehensive Collagen Crosslinking Comparison Of Microfluidic Wet-Extruded Microfibers For Bioactive Surgical Suture Development, Amrita Dasgupta, Nardos Sori, Stella Petrova, Yas Maghdouri-White, Nick Thayer, Nathan Kemper, Seth Polk, Delaney Leathers, Kelly Coughenour, Jake Dascoli, Riya Palikonda, Connor Donahue, Anna A. Bulysheva, Michael P. Francis Jan 2021

Comprehensive Collagen Crosslinking Comparison Of Microfluidic Wet-Extruded Microfibers For Bioactive Surgical Suture Development, Amrita Dasgupta, Nardos Sori, Stella Petrova, Yas Maghdouri-White, Nick Thayer, Nathan Kemper, Seth Polk, Delaney Leathers, Kelly Coughenour, Jake Dascoli, Riya Palikonda, Connor Donahue, Anna A. Bulysheva, Michael P. Francis

Bioelectrics Publications

Collagen microfiber-based constructs have garnered considerable attention for ligament, tendon, and other soft tissue repairs, yet with limited clinical translation due to strength, biocompatibility, scalable manufacturing, and other challenges. Crosslinking collagen fibers improves mechanical properties; however, questions remain regarding optimal crosslinking chemistries, biocompatibility, biodegradation, long-term stability, and potential for biotextile assemble at scale, limiting their clinical usefulness. Here, we assessed over 50 different crosslinking chemistries on microfluidic wet-extruded collagen microfibers made with clinically relevant collagen to optimize collagen fibers as a biotextile yarn for suture or other medical device manufacture. The endogenous collagen crosslinker, glyoxal, provides extraordinary fiber ultimate tensile …


Four Channel 6.5 Kv, 65 A, 100 Ns-100 Μs Generator With Advanced Control Of Pulse And Burst Protocols For Biomedical And Biotechnological Applications, Aleh Kandratsyeu, Uladzimir Sabaleuski, Luis Redondo, Andrei G. Pakhomov Jan 2021

Four Channel 6.5 Kv, 65 A, 100 Ns-100 Μs Generator With Advanced Control Of Pulse And Burst Protocols For Biomedical And Biotechnological Applications, Aleh Kandratsyeu, Uladzimir Sabaleuski, Luis Redondo, Andrei G. Pakhomov

Bioelectrics Publications

Pulsed electric fields in the sub-microsecond range are being increasingly used in biomedical and biotechnology applications, where the demand for high-voltage and high-frequency pulse generators with enhanced performance and pulse flexibility is pushing the limits of pulse power solid state technology. In the scope of this article, a new pulsed generator, which includes four independent MOSFET based Marx modulators, operating individually or combined, controlled from a computer user interface, is described. The generator is capable of applying different pulse shapes, from unipolar to bipolar pulses into biological loads, in symmetric and asymmetric modes, with voltages up to 6.5 kV and …


Peculiarities Of Neurostimulation By Intense Nanosecond Pulsed Electric Fields: How To Avoid Firing In Peripheral Nerve Fibers, Vitalii Kim, Emily Gudvangen, Oleg Kondratiev, Luis Redondo, Shu Xiao, Andrei G. Pakhomov Jan 2021

Peculiarities Of Neurostimulation By Intense Nanosecond Pulsed Electric Fields: How To Avoid Firing In Peripheral Nerve Fibers, Vitalii Kim, Emily Gudvangen, Oleg Kondratiev, Luis Redondo, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not …


Simultaneous Wound Border Segmentation And Tissue Classification Using A Conditional Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Manisa Pipattanasomporn, Ozgur Guler Jan 2021

Simultaneous Wound Border Segmentation And Tissue Classification Using A Conditional Generative Adversarial Network, Salih Sarp, Murat Kuzlu, Manisa Pipattanasomporn, Ozgur Guler

Engineering Technology Faculty Publications

Generative adversarial network (GAN) applications on medical image synthesis have the potential to assist caregivers in deciding a proper chronic wound treatment plan by understanding the border segmentation and the wound tissue classification visually. This study proposes a hybrid wound border segmentation and tissue classification method utilising conditional GAN, which can mimic real data without expert knowledge. We trained the network on chronic wound datasets with different sizes. The performance of the GAN algorithm is evaluated through the mean squared error, Dice coefficient metrics and visual inspection of generated images. This study also analyses the optimum number of training images …


Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Joint Modeling Of Rnaseq And Radiomics Data For Glioma Molecular Characterization And Prediction, Zeina A. Shboul, Norou Diawara, Arastoo Vossough, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

RNA sequencing (RNAseq) is a recent technology that profiles gene expression by measuring the relative frequency of the RNAseq reads. RNAseq read counts data is increasingly used in oncologic care and while radiology features (radiomics) have also been gaining utility in radiology practice such as disease diagnosis, monitoring, and treatment planning. However, contemporary literature lacks appropriate RNA-radiomics (henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive and also preserves the nature of RNAseq read counts data for glioma grading and prediction. The Negative Binomial (NB) distribution may be useful to model RNAseq read counts data that addresses potential shortcomings. …


The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi Jan 2021

The Resistive Barrier Discharge: A Brief Review Of The Device And Its Biomedical Applications, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

This paper reviews the principles behind the design and operation of the resistive barrier discharge, a low temperature plasma source that operates at atmospheric pressure. One of the advantages of this plasma source is that it can be operated using either DC or AC high voltages. Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low …


Cardioporation Enhances Myocardial Gene Expression In Rat Heart, Carly Boye, Sezgi Arpag, Nina Burcus, Cathryn Lundberg, Scott Declemente, Richard Heller, Michael Francis, Anna Bulysheva Jan 2021

Cardioporation Enhances Myocardial Gene Expression In Rat Heart, Carly Boye, Sezgi Arpag, Nina Burcus, Cathryn Lundberg, Scott Declemente, Richard Heller, Michael Francis, Anna Bulysheva

Bioelectrics Publications

Damage from myocardial infarction (MI) and subsequent heart failure are serious public health concerns. Current clinical treatments and therapies to treat MI damage largely do not address the regeneration of cardiomyocytes. In a previous study, we established that it is possible to promote regeneration of cardiac muscle with vascular endothelial growth factor B gene delivery directly to the ischemic myocardium. In the current study we aim to optimize cardioporation parameters to increase expression efficiency by varying electrode configuration, applied voltage, pulse length, and plasmid vector size. By using a surface monopolar electrode, optimized pulsing conditions and reducing vector size, we …


Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin Jan 2021

Deep Neural Network Analysis Of Pathology Images With Integrated Molecular Data For Enhanced Glioma Classification And Grading, Linmin Pei, Karra A. Jones, Zeina A. Shboul, James Y. Chen, Khan M. Iftekharuddin

Electrical & Computer Engineering Faculty Publications

Gliomas are primary brain tumors that originate from glial cells. Classification and grading of these tumors is critical to prognosis and treatment planning. The current criteria for glioma classification in central nervous system (CNS) was introduced by World Health Organization (WHO) in 2016. This criteria for glioma classification requires the integration of histology with genomics. In 2017, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) was established to provide up-to-date recommendations for CNS tumor classification, which in turn the WHO is expected to adopt in its upcoming edition. In this work, we propose a novel …


Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi Jan 2021

Plasma-Treated Solutions (Pts) In Cancer Therapy, Hiromasa Tanaka, Sander Bekeschus, Dayun Yan, Masaru Hori, Michael Keidar, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to …


Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang Jan 2021

Design Of A 10 Mev Beamline At The Upgraded Injector Test Facility For E-Beam Irradiation, Xi Li, Helmut Baumgart, Gianluigi Ciovati, F.E. Hannon, S. Wang

Electrical & Computer Engineering Faculty Publications

Electron beam irradiation near 10 MeV is suitable for wastewater treatment. The Upgraded Injector Test Facility (UITF) at Jefferson Lab is a CW superconducting linear accelerator capable of providing an electron beam of energy up to 10 MeV and up to 100 µA current. This contribution presents the beam transport simulations for a beamline to be used for the irradiation of wastewater samples at the UITF. The simulations were done using the code General Particle Tracer with the goal of obtaining an 8 MeV electron beam of radius (3-σ) of ~2.4 cm. The achieved energy spread is ~74.5 keV. The …


Monopolar Gene Electrotransfer Enhances Plasmid Dna Delivery To Skin, Anna Bulysheva, Loree Heller, Michael Francis, Frency Varghese, Carly Boye, Richard Heller Jan 2021

Monopolar Gene Electrotransfer Enhances Plasmid Dna Delivery To Skin, Anna Bulysheva, Loree Heller, Michael Francis, Frency Varghese, Carly Boye, Richard Heller

Electrical & Computer Engineering Faculty Publications

A novel monopolar electroporation system and methodologies were developed for in vivo electroporation intended for potential clinical applications such as gene therapy. We hypothesized that an asymmetric anode/cathode electrode applicator geometry could produce favorable electric fields for electroporation, without the typical drawback associated with traditional needle and parallel plate geometries. Three monopolar electrode applicator prototypes were built and tested for gene delivery of reporter genes to the skin in a guinea pig model. Gene expression was evaluated in terms of kinetics over time and expression distribution within the treatment site. Different pulsing parameters, including pulse amplitude, pulse duration, and pulse …


Low-Temperature Gas Plasma Combined With Antibiotics For The Reduction Of Methicillin-Resistant Staphylococcus Aureus Biofilm Both In Vitro And In Vivo, Li Guo, Lu Yang, Yu Qi, Gulimire Niyazi, Jianbao Zheng, Ruobing Xu, Xusong Chen, Jingye Zhang, Wang Xi, Dingxin Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong Jan 2021

Low-Temperature Gas Plasma Combined With Antibiotics For The Reduction Of Methicillin-Resistant Staphylococcus Aureus Biofilm Both In Vitro And In Vivo, Li Guo, Lu Yang, Yu Qi, Gulimire Niyazi, Jianbao Zheng, Ruobing Xu, Xusong Chen, Jingye Zhang, Wang Xi, Dingxin Liu, Xiaohua Wang, Hailan Chen, Michael G. Kong

Electrical & Computer Engineering Faculty Publications

Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to antibiotics. However, the combined treatment has not been applied to infectious diseases. In this study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood and histochemical analysis demonstrated the biosafety of …