Open Access. Powered by Scholars. Published by Universities.®

Biomedical Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical

Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova Oct 2017

Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, …


Perspective: The Physics, Diagnostics, And Applications Of Atmospheric Pressure Low Temperature Plasma Sources Used In Plasma Medicine, M. Laroussi Jul 2017

Perspective: The Physics, Diagnostics, And Applications Of Atmospheric Pressure Low Temperature Plasma Sources Used In Plasma Medicine, M. Laroussi

Electrical & Computer Engineering Faculty Publications

Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources …