Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Electrical and Computer Engineering

Modeling And Simulation Of Tunable Photonic Crystals, Weiqing Yang Dec 2010

Modeling And Simulation Of Tunable Photonic Crystals, Weiqing Yang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Photonic crystals (PhCs) have wavelength scale periodically alternating refractive indexes. Photon in such structures is subject to strong scattering, experiencing distinctive redistribution of energy, yielding interesting properties such as photonic band gaps, field enhancement, strong nonlinear optic effects and photon confinement. The modified fields also alter the propagation of light beams. By proper setup, super collimation could be realized in PhCs where beams can travel long distance without spreading, while no waveguide structure is used. Redirection of light can extend the refraction to negative range, without violating physics rules. This distinguished phenomenon has been envisioned as the core mechanism for …


Generalized Ellipsometry On Sculptured Thin Films Made By Glancing Angle Deposition, Daniel Schmidt Dec 2010

Generalized Ellipsometry On Sculptured Thin Films Made By Glancing Angle Deposition, Daniel Schmidt

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, physical properties of highly optically and magnetically anisotropic metal sculptured thin films made by glancing angle deposition are presented. Predominantly, the determination of optical and magneto-optical properties with spectroscopic generalized Mueller matrix ellipsometry and homogenization approaches is discussed. Nomenclatures are proposed to unambiguously identify the sculptured thin film geometry.

Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films in the spectral range from 400 to 1700 nm. The analysis of metal slanted columnar thin films (F1-STFs) deposited at glancing angle ( …