Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics

2010

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 61

Full-Text Articles in Electrical and Computer Engineering

Design A Stable 14-To-20-Ghz Source, M. Moghavvemi, A. Attaran, Hossein Ameri Mahabadi Dec 2010

Design A Stable 14-To-20-Ghz Source, M. Moghavvemi, A. Attaran, Hossein Ameri Mahabadi

Hossein Ameri Mahabadi

Careful selection of key components and the use of straightforward multiplication schemes can be applied to the design of a low-noise frequency synthesizer for Ku-band signals to 20 GHz.


Modeling And Simulation Of Tunable Photonic Crystals, Weiqing Yang Dec 2010

Modeling And Simulation Of Tunable Photonic Crystals, Weiqing Yang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Photonic crystals (PhCs) have wavelength scale periodically alternating refractive indexes. Photon in such structures is subject to strong scattering, experiencing distinctive redistribution of energy, yielding interesting properties such as photonic band gaps, field enhancement, strong nonlinear optic effects and photon confinement. The modified fields also alter the propagation of light beams. By proper setup, super collimation could be realized in PhCs where beams can travel long distance without spreading, while no waveguide structure is used. Redirection of light can extend the refraction to negative range, without violating physics rules. This distinguished phenomenon has been envisioned as the core mechanism for …


Generalized Ellipsometry On Sculptured Thin Films Made By Glancing Angle Deposition, Daniel Schmidt Dec 2010

Generalized Ellipsometry On Sculptured Thin Films Made By Glancing Angle Deposition, Daniel Schmidt

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, physical properties of highly optically and magnetically anisotropic metal sculptured thin films made by glancing angle deposition are presented. Predominantly, the determination of optical and magneto-optical properties with spectroscopic generalized Mueller matrix ellipsometry and homogenization approaches is discussed. Nomenclatures are proposed to unambiguously identify the sculptured thin film geometry.

Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films in the spectral range from 400 to 1700 nm. The analysis of metal slanted columnar thin films (F1-STFs) deposited at glancing angle ( …


On The Use Of Natural-Mode Basis Functions For Electromagnetic Analysis Of Arbitrary Conducting Surfaces, Joshua Lawrence Dec 2010

On The Use Of Natural-Mode Basis Functions For Electromagnetic Analysis Of Arbitrary Conducting Surfaces, Joshua Lawrence

All Theses

The natural modes defined in the singularity expansion method (SEM) are used as basis functions for the frequency- and time-domain current responses of arbitrary perfect electrically conducting (PEC) surfaces in this work. First, a method of determining the natural frequencies and corresponding modes which employs the electric field integral equation is presented. These quantities are then calculated for several geometries and the currents induced due to an incident plane wave in the frequency and time domains are approximated by a weighted sum of the natural modes. Additionally, the modal weights prescribed by SEM are compared to a set of weights …


Rf Shields That Can Be Integrated With Ic Test Handlers, Chin-Leong Lim Nov 2010

Rf Shields That Can Be Integrated With Ic Test Handlers, Chin-Leong Lim

Chin-Leong Lim

This paper describes several radio frequency interference shields that have been developed for integration with high-speed bulk-input turret-test IC handlers. The shields were developed to mitigate interference to noise figure measurements of Low Noise Amplifier components. Two categories of shielded enclosures were evaluated for shielding effectiveness and ease of incorporation into the existing machines and manufacturing processes. The first category enclosed the handler's working area in its entirety, while the second one enclosed the testboard only. Variation in the testboard shield design was required to suit different collet trajectories between handler models. The shielding effectiveness (SE) was measured according to …


Microstrip-Fed Wideband Circularly Polarized Printed Antenna, Xiulong Bao, Max Ammann, Patrick Mcevoy Oct 2010

Microstrip-Fed Wideband Circularly Polarized Printed Antenna, Xiulong Bao, Max Ammann, Patrick Mcevoy

Articles

A wideband circularly-polarized printed antenna is proposed, which employs an asymmetrical dipole and a slit in the ground plane which are fed by an L-shaped microstrip feedline using a via. The proposed antenna geometry is arranged so that the orthogonal surface currents, which are generated in the dipole, feedline and ground plane, have the appropriate phase to provide circular polarization. A parametric study of the key parameters is made and the mechanism for circular polarization is described. The measured results show that the impedance bandwidth is approximately 1.34 GHz (2.45 GHz to 3.79 GHz) and the 3 dB axial ratio …


Improving Range Estimation Of A 3d Flash Ladar Via Blind Deconvolution, Jason R. Mcmahon Sep 2010

Improving Range Estimation Of A 3d Flash Ladar Via Blind Deconvolution, Jason R. Mcmahon

Theses and Dissertations

The purpose of this research effort is to improve and characterize range estimation in a three-dimensional FLASH LAser Detection And Ranging (3D FLASH LADAR) by investigating spatial dimension blurring effects. The myriad of emerging applications for 3D FLASH LADAR both as primary and supplemental sensor necessitate superior performance including accurate range estimates. Along with range information, this sensor also provides an imaging or laser vision capability. Consequently, accurate range estimates would also greatly aid in image quality of a target or remote scene under interrogation. Unlike previous efforts, this research accounts for pixel coupling by defining the range image mathematical …


The Electronic Structure And Secondary Pyroelectric Properties Of Lithium Tetraborate, Volodymyr T. Adamiv, Yaroslav V. Burak, David J. Wooten, John W. Mcclory, James C. Petrosky, Ihor Ketsman, Ya B. Losovyj, Peter A. Dowben, Jie Xiao Sep 2010

The Electronic Structure And Secondary Pyroelectric Properties Of Lithium Tetraborate, Volodymyr T. Adamiv, Yaroslav V. Burak, David J. Wooten, John W. Mcclory, James C. Petrosky, Ihor Ketsman, Ya B. Losovyj, Peter A. Dowben, Jie Xiao

Faculty Publications

We review the pyroelectric properties and electronic structure of Li2B4O7(110) and Li2B4O7(100) surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of …


Addressing Computational Complexity Of Electromagnetic Systems Using Parameterized Model Order Reduction, Majid Ahmadloo Aug 2010

Addressing Computational Complexity Of Electromagnetic Systems Using Parameterized Model Order Reduction, Majid Ahmadloo

Electronic Thesis and Dissertation Repository

As operating frequencies increase, full wave numerical techniques such as the finite element method (FEM) become necessary for the analysis of high-frequency and microwave circuit structures. However, the FEM formulation of microwave circuits often results in very large systems of equations which are computationally expensive to solve. The objective of this thesis is to develop new parameterized model order eduction (MOR) techniques to minimize the computational complexity of microwave circuits. MOR techniques provide a mechanism to generate reduced order models from the detailed description of the original FEM formulation. The following contributions are made in this thesis:

1. The first …


Performance Measures In Acousto-Optic Chaotic Signal Encryption System Subject To Parametric Variations And Additive Noise, Monish Ranjan Chatterjee, Anjan K. Ghosh, Mohammed A. Al-Saedi Aug 2010

Performance Measures In Acousto-Optic Chaotic Signal Encryption System Subject To Parametric Variations And Additive Noise, Monish Ranjan Chatterjee, Anjan K. Ghosh, Mohammed A. Al-Saedi

Electrical and Computer Engineering Faculty Publications

Signal encryption and recovery using chaotic optical waves has been a subject of active research in the past 10 years. Since an acousto-optic Bragg cell with zeroth- and first-order feedback exhibits chaotic behavior past the threshold for bistability, such a system was recently examined for possible chaotic encryption using a low-amplitude sinusoidal signal applied via the bias input of the sound cell driver.

Subsequent recovery of the message signal was carried out via a heterodyne strategy employing a locally generated chaotic carrier, with threshold parameters matched to the transmitting Bragg cell. The simulation results, though encouraging, were limited to relatively …


Consideration Of Dispersion And Group Velocity Dispersion In The Determination Of Velocities Of Electromagnetic Propagation, Monish Ranjan Chatterjee, Partha P. Banerjee Aug 2010

Consideration Of Dispersion And Group Velocity Dispersion In The Determination Of Velocities Of Electromagnetic Propagation, Monish Ranjan Chatterjee, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

Electromagnetic (EM) propagation velocities play an important role in the determination of power and energy flow in materials and interfaces. It is well known that group and phase velocities need to be in opposition in order to achieve negative refractive index.

Recently, we have shown that considerable differences may exist in phase, group and signal/energy velocities for normal and anomalous dispersion, especially near dielectric resonances. This paper examines the phase and group velocities in the presence of normal and anomalous dispersion, and group velocity dispersion (GVD), which requires introduction of the second order coefficient in the permittivity and permeability models.


Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan Jul 2010

Effect Of Particle Properties And Light Polarization On The Plasmonic Resonances In Metallic Nanoparticles, U. Guler, R. Turan

U. Guler

The resonance behavior of localized surface plasmons in silver and gold nanoparticles was studied in the visible and near-infrared regions of the electromagnetic spectrum. Arrays of nano-sized gold (Au) and silver (Ag) particles with different properties were produced with electron-beam lithography technique over glass substrates. The effect of the particle size, shape variations, period, thickness, metal type, substrate type and sulfidation were studied via transmission and reflectance measurements. The results are compared with the theoretical calculations based on the DDA simulations performed by software developed in this study. We propose a new intensity modulation technique based on localized surface plasmons …


Design An X-Band Frequency Synthesizer, Hossein Ameri Mahabadi, A. Attaran, M. Moghavvemi Jun 2010

Design An X-Band Frequency Synthesizer, Hossein Ameri Mahabadi, A. Attaran, M. Moghavvemi

Hossein Ameri Mahabadi

This frequency synthesizer design aims at achieving low phase and high reliability for X-band digital microwave radio applications, using a commercial device and frequency tripling techniques.


Aperture Coupled Microstrip Antenna Design And Analysis, Michael Paul Civerolo Jun 2010

Aperture Coupled Microstrip Antenna Design And Analysis, Michael Paul Civerolo

Master's Theses

A linearly-polarized aperture coupled patch antenna design is characterized and optimized using HFSS antenna simulation software. This thesis focuses on the aperture coupled patch antenna due to the lack of fabrication and tuning documentation for the design of this antenna and its usefulness in arrays and orthogonally polarized communications. The goal of this thesis is to explore dimension effects on aperture coupled antenna performance, to develop a design and tuning procedure, and to describe performance effects through electromagnetic principles.

Antenna parameters examined in this study include the dimensions and locations of the substrates, feed line, ground plane coupling slot, and …


Standalone Antenna Demonstration System, Alexander James Hempy Jun 2010

Standalone Antenna Demonstration System, Alexander James Hempy

Master's Theses

Antenna systems play a significant role in today’s electronic communications. They are essential for cell phones, satellites, radio, and radar among many other important applications. This paper describes the design, assembly, and operation of an antenna demonstration system designed to instill interest in the field of antenna design among high school and undergraduate college students. The system is portable, supplied solely by DC power supplies, easily reproducible, and includes rotational axes to illustrate antenna performance limitations and requirements. It provides a visual indication of wireless signal strength and demonstrates several antenna performance characteristics including polarization, gain and directivity, radiation patterns …


Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu Jun 2010

Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu

Master's Theses

Gallium nitride (GaN) light emitting diodes (LED) embody a large field of research that aims to replace inefficient, conventional light sources with LEDs that have lower power, higher luminosity, and longer lifetime. This thesis presents an international collaboration effort between the State Key Laboratory for Mesoscopic Physics in Peking University (PKU) of Beijing, China and the Electrical Engineering Department of California Polytechnic State University, San Luis Obispo. Over the course of 2 years, Cal Poly’s side has simulated GaN LEDs within the pure blue wavelength spectrum (460nm), focusing specifically on the effects of reflection gratings, transmission gratings, top and bottom …


Improved Rf Power Extraction From 1.55um Ge-On-Soi Pin Photodiodes With Load Impedance Optimization, Andrew L. Huard Jun 2010

Improved Rf Power Extraction From 1.55um Ge-On-Soi Pin Photodiodes With Load Impedance Optimization, Andrew L. Huard

Master's Theses

VLSI miniaturization has created the need for high-density, low-cost, monolithically-integrated optical interconnects. High output power photodetectors are needed to directly drive load circuitry, which improves the noise performance and dynamic range of optical communications links by eliminating a post amplifier stage. Elimination of the post amplifier also reduces circuit cost and complexity. A new Si-Ge PIN waveguide photodiode with 31GHz bandwidth and 93% quantum efficiency at 1550nm has been developed by Yin et al., which was fabricated using standard CMOS processes on a Silicon substrate. This thesis demonstrates a method for improving the RF power extraction from these photodiodes by …


Novel Techniques For The Integration Of Antennas And Photovoltaic Cells, Maria Roo Ons, S. Shynu, Max Ammann, Sarah Mccormack, Brian Norton Apr 2010

Novel Techniques For The Integration Of Antennas And Photovoltaic Cells, Maria Roo Ons, S. Shynu, Max Ammann, Sarah Mccormack, Brian Norton

Conference Papers

Various novel approaches to the integration of antenna and photovoltaic technologies are proposed. These include the use of polycrystalline solar cells as groundplane for microstrip patch antennas as well as for reflectors of half-wave dipole antennas. Transparent materials were also evaluated as antenna radiating elements, allowing greater solar efficiency. A novel technique illustrating how emitter-wrap-through rear contact solar cells can be used as a folded-dipole antenna, which is located in the focal line of a parabolic solar concentrator, to provide high solar efficiency as well as high antenna gain, is presented.


Nuclear Electromagnetic Currents In Chiral Effective Field Theory, Saori Pastore Apr 2010

Nuclear Electromagnetic Currents In Chiral Effective Field Theory, Saori Pastore

Physics Theses & Dissertations

A nucleon-nucleon potential and consistent nuclear electromagnetic currents are derived in chiral effective field theory retaining pions and nucleons as explicit degrees of freedom. The calculation of the potential is carried out up to next-to-next-to leading order (N2LO), while the currents include up to N3LO corrections. The potential at N2 LO and currents at N3LO consist of two-pion-exchange and contact contributions. The currents are then utilized to study a number of low-energy electromagnetic observables induced by magnetic dipole transitions, such as the deuteron and trinucleon magnetic moments and the np, nd and n …


Electromagnetic Solutions For The Agricultural Problems, Hadi Aliakbarian, Amin Enayati, Maryam Ashayer Soltani, Hossein Ameri Mahabadi, Mahmoud Moghavvemi Mar 2010

Electromagnetic Solutions For The Agricultural Problems, Hadi Aliakbarian, Amin Enayati, Maryam Ashayer Soltani, Hossein Ameri Mahabadi, Mahmoud Moghavvemi

Hossein Ameri Mahabadi

Introduction In the recent years, interactive relations between various branches of science and technology have improved interdisciplinary fields of science. In fact, most of the research activities take place somewhere among these branches. Therefore, a specialist from one branch usually can propose novel methods, whenever enters a new field, based on his previous knowledge. Taking a look at the extensive problems in the field of agriculture, an expert in the field of Electromagnetic waves can easily suggest some innovative solutions to solve them. The major suffering problems with which a farmer faces are the damages caused by the harmful pests …


Application Of The Three Short Calibration Technique In A Low Frequency Focus Beam System, William E. Gunn Jr. Mar 2010

Application Of The Three Short Calibration Technique In A Low Frequency Focus Beam System, William E. Gunn Jr.

Theses and Dissertations

Electromagnetic material characterization is the process of determining the constitutive parameters of matter. In simple media, these parameters are permittivity and permeability. Characterization of these values is often accomplished through the use of waveguides, transmission lines, coaxial cables, and resonant cavities. Free space measurements systems are employed since they are non destructive (i.e., no sample machining is required) and broadband. Traditionally, time domain gating is utilized to mitigate systematic errors. However, an artifact of this calibration technique is band edge corruption due to data windowing. The goal of this research is to develop and apply a Three Short Calibration Technique …


Changes To Electrical Conductivity In Irradiated Carbon-Nickel Nanocomposites, David F. Coy Mar 2010

Changes To Electrical Conductivity In Irradiated Carbon-Nickel Nanocomposites, David F. Coy

Theses and Dissertations

Pre and post irradiation resistivity and XAFS measurements have been conducted to examine the effects of 0.5 MeV electron irradiations on nickel-carbon composites. Results showed a decrease in surface resistivity in all sample types of 14-30% following irradiation with a total electron exposure of 4 x 10-16 cm-2. Results also showed a corresponding decrease in NiO content for the irradiated samples as compared to measurements of non-irradiated samples. Surface resistivity measurement capabilities were established and measurement techniques refined to produce repeatable results of sufficient precision to discern changes in resistivity for an exposure of 2 x 10 …


Calibration Of The Umass Advanced Multi-Frequency Radar, Matthew Mclinden Jan 2010

Calibration Of The Umass Advanced Multi-Frequency Radar, Matthew Mclinden

Masters Theses 1911 - February 2014

The Advanced Multi-Frequency Radar is a three-frequency system designed and built by the University of Massachusetts Microwave Remote Sensing Lab (MIRSL). The radar has three frequencies, Ku-band (13.4 GHz), Ka-band (35.6 GHz), and W-band (94.92GHz). The additional information gained from additional frequencies allows the system to be sensitive to a wide range of atmospheric and precipitation particle sizes, while increasing the ability to derive particle microphysics from radar retrievals.

This thesis details the calibration of data from the Canadian CloudSat/CALIPSO Validation Project (C3VP) held during January 2007 in Ontario, Canada. The calibration used internal calibration path data and was confirmed …


Fast Parameter-Space Sweep Of Wideband Electromagnetic Systems Using Bt-Pod, Wei Wang Jan 2010

Fast Parameter-Space Sweep Of Wideband Electromagnetic Systems Using Bt-Pod, Wei Wang

Masters Theses 1911 - February 2014

Modeling and design of high frequency electronic systems such as antennas and microwave devices require the rigorous numerical solution of Maxwell’s equa- tions. The frequency-domain (time-harmonic) tangential vector finite element method (TVFEM) for Maxwell equations results in a second-order dynamical electromagnetic model that must be repeatedly solved for multiple frequencies, excitation or material parameters each design loop. This leads to extremely long design turnaround that often is not optimal. This work will propose an accurate, error controllable and ef- ficient multi-parametric model order reduction scheme that significantly accelerate these parameters sweep. At the core of this work is the proper …


Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-Gap Semiconductors, Claudiu Cirloganu Jan 2010

Experimental And Theoretical Approaches To Characterization Of Electronic Nonlinearities In Direct-Gap Semiconductors, Claudiu Cirloganu

Electronic Theses and Dissertations

The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier …


Epitaxial Growth, Characterization And Application Of Novel Wide Bandgap Oxide Semiconductors, Jeremy Mares Jan 2010

Epitaxial Growth, Characterization And Application Of Novel Wide Bandgap Oxide Semiconductors, Jeremy Mares

Electronic Theses and Dissertations

In this work, a body of knowledge is presented which pertains to the growth, characterization and exploitation of high quality, novel II-IV oxide epitaxial films and structures grown by plasma-assisted molecular beam epitaxy. The two compounds of primary interest within this research are the ternary films NixMg1-xO and ZnxMg1-xO and the investigation focuses predominantly on the realization, assessment and implementation of these two oxides as optoelectronic materials. The functioning hypothesis for this largely experimental effort has been that these cubic ternary oxides can be exploited - and possibly even juxtaposed - to realize novel wide band gap optoelectronic technologies. The …


Fast Response Dual Frequency Liquid Crystal Materials, Qiong Song Jan 2010

Fast Response Dual Frequency Liquid Crystal Materials, Qiong Song

Electronic Theses and Dissertations

Dual frequency liquid crystal (DFLC) exhibits a positive dielectric anisotropy at low frequencies and negative dielectric anisotropy at high frequencies. The frequency where dielectric anisotropy is zero is called crossover frequency. DFLC can achieve fast rise time and fast decay time with the assistance of applied voltage. However, one drawback of DFLC is that it has dielectric heating effect when driven at a high frequency. Thus, the first part of this dissertation is to develop low crossover frequency DFLC materials. The dielectric relaxation and physical properties of some single- and double-ester compounds were investigated. Experimental results indicate that the double-ester …


Quantum Dot Based Mode-Locked Semiconductor Lasers And Applications, Jimyung Kim Jan 2010

Quantum Dot Based Mode-Locked Semiconductor Lasers And Applications, Jimyung Kim

Electronic Theses and Dissertations

In this dissertation, self-assembled InAs/InGaAs quantum dot Fabry-Perot lasers and mode-locked lasers are investigated. The mode-locked lasers investigated include monolithic and curved two-section devices, and colliding pulse mode-locked diode lasers. Ridge waveguide semiconductor lasers have been designed and fabricated by wet etching processes. Electroluminescence of the quantum dot lasers is studied. Cavity length dependent lasing via ground state and/or excited state transitions is observed from quantum dot lasers and the optical gain from both transitions is measured. Stable optical pulse trains via ground and excited state transitions are generated using a grating coupled external cavity with a curved two-section device. …


Response-Calibration Techniques For Antenna-Coupled Infrared Sensors, Peter Krenz Jan 2010

Response-Calibration Techniques For Antenna-Coupled Infrared Sensors, Peter Krenz

Electronic Theses and Dissertations

Infrared antennas are employed in sensing applications requiring specific spectral, polarization, and directional properties. Because of their inherently small dimensions, there is significant interaction, both thermal and electromagnetic, between the antenna, the antenna-coupled sensor, and the low-frequency readout structures necessary for signal extraction at the baseband modulation frequency. Validation of design models against measurements requires separation of these effects so that the response of the antenna-coupled sensor alone can be measured in a calibrated manner. Such validations will allow confident extension of design techniques to more complex infrared-antenna configurations. Two general techniques are explored to accomplish this goal. The extraneous …


Accelerating Optical Airy Beams, Georgios Siviloglou Jan 2010

Accelerating Optical Airy Beams, Georgios Siviloglou

Electronic Theses and Dissertations

Over the years, non-spreading or non-diffracting wave configurations have been systematically investigated in optics. Perhaps the best known example of a diffraction-free optical wave is the so-called Bessel beam, first suggested and observed by Durnin et al. This work sparked considerable theoretical and experimental activity and paved the way toward the discovery of other interesting non-diffracting solutions. In 1979 Berry and Balazs made an important observation within the context of quantum mechanics: they theoretically demonstrated that the Schrodinger equation describing a free particle can exhibit a non-spreading Airy wavepacket solution. This work remained largely unnoticed in the literature-partly because such …