Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Localization

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Robotics

Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries Jan 2023

Evaluation Of Lidar Uncertainty And Applications Towards Slam In Off-Road Environments, Zachary D. Jeffries

Dissertations, Master's Theses and Master's Reports

Safe and robust operation of autonomous ground vehicles in all types of conditions and environment necessitates complex perception systems and unique, innovative solutions. This work addresses automotive lidar and maximizing the performance of a simultaneous localization and mapping stack. An exploratory experiment and an open benchmarking experiment are both presented. Additionally, a popular SLAM application is extended to use the type of information gained from lidar characterization, demonstrating the performance gains and necessity to tightly couple perception software and sensor hardware. The first exploratory experiment collects data from child-sized, low-reflectance targets over a range from 15 m to 35 m. …


Exploiting The Advantages And Overcoming The Challenges Of The Cable In A Tethered Drone System, Rogerio Rodrigues Lima Jan 2023

Exploiting The Advantages And Overcoming The Challenges Of The Cable In A Tethered Drone System, Rogerio Rodrigues Lima

Graduate Theses, Dissertations, and Problem Reports

This dissertation proposes solutions for motion planning, localization, and landing of tethered drones using only tether variables. A tether-based multi-model localization framework for tethered drones is proposed. This framework comprises three independent localization strategies based on a different model. The first strategy uses simple trigonometric relations assuming that the tether is taut; the second method relies on a set of catenary equations for the slack tether case; the third estimator is a neural network-based predictor that can cover different tether shapes. Multi-layer perceptron networks previously trained with a dataset comprised of the tether variables (i.e., length, tether angles on the …


Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo Jan 2021

Planning Algorithms Under Uncertainty For A Team Of A Uav And A Ugv For Underground Exploration, Matteo De Petrillo

Graduate Theses, Dissertations, and Problem Reports

Robots’ autonomy has been studied for decades in different environments, but only recently, thanks to the advance in technology and interests, robots for underground exploration gained more attention. Due to the many challenges that any robot must face in such harsh environments, this remains an challenging and complex problem to solve.

As technology became cheaper and more accessible, the use of robots for underground ex- ploration increased. One of the main challenges is concerned with robot localization, which is not easily provided by any Global Navigation Services System (GNSS). Many developments have been achieved for indoor mobile ground robots, making …


Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang Jan 2021

Localization Algorithms For Gnss-Denied And Challenging Environments, Chizhao Yang

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, the problem about localization in GNSS-denied and challenging environments is addressed. Specifically, the challenging environments discussed in this dissertation include two different types, environments including only low-resolution features and environments containing moving objects. To achieve accurate pose estimates, the errors are always bounded through matching observations from sensors with surrounding environments. These challenging environments, unfortunately, would bring troubles into matching related methods, such as "fingerprint" matching, and ICP. For instance, in environments with low-resolution features, the on-board sensor measurements could match to multiple positions on a map, which creates ambiguity; in environments with moving objects included, the …


Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic Jan 2021

Planetary Rover Inertial Navigation Applications: Pseudo Measurements And Wheel Terrain Interactions, Cagri Kilic

Graduate Theses, Dissertations, and Problem Reports

Accurate localization is a critical component of any robotic system. During planetary missions, these systems are often limited by energy sources and slow spacecraft computers. Using proprioceptive localization (e.g., using an inertial measurement unit and wheel encoders) without external aiding is insufficient for accurate localization. This is mainly due to the integrated and unbounded errors of the inertial navigation solutions and the drifted position information from wheel encoders caused by wheel slippage. For this reason, planetary rovers often utilize exteroceptive (e.g., vision-based) sensors. On the one hand, localization with proprioceptive sensors is straightforward, computationally efficient, and continuous. On the other …


V-Slam And Sensor Fusion For Ground Robots, Ejup Hoxha Jan 2020

V-Slam And Sensor Fusion For Ground Robots, Ejup Hoxha

Dissertations and Theses

In underground, underwater and indoor environments, a robot has to rely solely on its on-board sensors to sense and understand its surroundings. This is the main reason why SLAM gained the popularity it has today. In recent years, we have seen excellent improvement on accuracy of localization using cameras and combinations of different sensors, especially camera-IMU (VIO) fusion. Incorporating more sensors leads to improvement of accuracy,but also robustness of SLAM. However, while testing SLAM in our ground robots, we have seen a decrease in performance quality when using the same algorithms on flying vehicles.We have an additional sensor for ground …


A Comparative Study Of Feature Detection Methods For Auv Localization, Andrew Y. Kim Jun 2018

A Comparative Study Of Feature Detection Methods For Auv Localization, Andrew Y. Kim

Master's Theses

Underwater localization is a difficult task when it comes to making the system autonomous due to the unpredictable environment. The fact that radio signals such as GPS cannot be transmitted through water makes autonomous movement and localization underwater even more challenging. One specific method that is widely used for autonomous underwater navigation applications is Simultaneous Localization and Mapping (SLAM), a technique in which a map is created and updated while localizing the vehicle within the map. In SLAM, feature detection is used in landmark extraction and data association by examining each pixel and differentiating landmarks pixels from those of the …


A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam Apr 2018

A Dynamical System Approach For Resource-Constrained Mobile Robotics, Tauhidul Alam

FIU Electronic Theses and Dissertations

The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be …


Collaborative Appearance-Based Place Recognition And Improving Place Recognition Using Detection Of Dynamic Objects, Juan Pablo Munoz Feb 2018

Collaborative Appearance-Based Place Recognition And Improving Place Recognition Using Detection Of Dynamic Objects, Juan Pablo Munoz

Dissertations, Theses, and Capstone Projects

This dissertation makes contributions to the problem of Long-Term Appearance-Based Place Recognition. We present a framework for place recognition in a collaborative scheme and a method to reduce the impact of dynamic objects on place representations. We demonstrate our findings using a state-of-the-art place recognition approach.

We begin in Part I by describing the general problem of place recognition and its importance in applications where accurate localization is crucial. We discuss feature detection and description and also explain the functioning of several place recognition frameworks.

In Part II, we present a novel framework for collaboration between agents from a pure …


Ego-Localization Navigation For Intelligent Vehicles Using 360° Lidar Sensor For Point Cloud Mapping, Tyler Naes Jan 2017

Ego-Localization Navigation For Intelligent Vehicles Using 360° Lidar Sensor For Point Cloud Mapping, Tyler Naes

Electronic Theses and Dissertations

With its prospects of reducing vehicular accidents and traffic in highly populated urban areas by taking the human error out of driving, the future in automobiles is leaning towards autonomous navigation using intelligent vehicles. Autonomous navigation via Light Detection And Ranging (LIDAR) provides very accurate localization within a predefined, a priori, point cloud environment that is not possible with Global Positioning System (GPS) and video camera technology. Vehicles may be able to follow paths in the point cloud environment if the baseline paths it must follow are known in that environment by referencing objects detected in the point cloud …


Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy Jan 2017

Heterogeneous Multi-Sensor Fusion For 2d And 3d Pose Estimation, Hanieh Deilamsalehy

Dissertations, Master's Theses and Master's Reports

Sensor fusion is a process in which data from different sensors is combined to acquire an output that cannot be obtained from individual sensors. This dissertation first considers a 2D image level real world problem from rail industry and proposes a novel solution using sensor fusion, then proceeds further to the more complicated 3D problem of multi sensor fusion for UAV pose estimation.

One of the most important safety-related tasks in the rail industry is an early detection of defective rolling stock components. Railway wheels and wheel bearings are two components prone to damage due to their interactions with the …


Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage Jan 2016

Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles, Doris Turnage

Electronic Theses and Dissertations

The main goals of this research were to enhance a commercial off the shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field testing. Developing this platform will enhance the U. S. Army Engineering Research and Development Center’s (ERDC’s) current capabilities and create a safe and efficient autonomous vehicle to perform the following functions within tunnels: (1) localization (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the environment for objects of interest, and …


Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker Jan 2015

Robot Localization Obtained By Using Inertial Measurements, Computer Vision, And Wireless Ranging, William Baker

Graduate College Dissertations and Theses

Robots have long been used for completing tasks that are too difficult, dangerous, or distant to be accomplished by humans. In many cases, these robots are highly specialized platforms - often expensive and capable of completing every task related to a mission's objective. An alternative approach is to use multiple platforms, each less capable in terms of number of tasks and thus significantly less complex and less costly. With advancements in embedded computing and wireless communications, multiple such platforms have been shown to work together to accomplish mission objectives. In the extreme, collections of very simple robots have demonstrated emergent …


Analysis, Optimization, And Implementation Of A Uav-Based Wireless Power Transfer System, Andrew Mittleider May 2014

Analysis, Optimization, And Implementation Of A Uav-Based Wireless Power Transfer System, Andrew Mittleider

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Wireless power transfer is rapidly advancing in its ability to efficiently transfer power to a variety of devices.

As the efficiency increases, more applications for these systems arise. Since magnetic resonant wireless power transfer can only transfer a small amount of power, most current applications only focus on powering low-powered devices.

Wireless Sensor Networks are composed of many low-powered nodes which currently require human interaction to remain powered. We propose recharging a low-powered Wireless Sensor Network (WSN) with a magnetic resonant wireless power transfer system attached to a quadrotor Unmanned Aerial Vehicle (UAV).

This thesis addresses three main challenges with …


Robotic Swarming Without Inter-Agent Communication, Daniel Jonathan Standish Jan 2013

Robotic Swarming Without Inter-Agent Communication, Daniel Jonathan Standish

USF Tampa Graduate Theses and Dissertations

Many physical and algorithmic swarms utilize inter-agent communication to achieve advanced swarming behaviors. These swarms are inspired by biological swarms that can be seen throughout nature and include bee swarms, ant colonies, fish schools, and bird flocks. These biological swarms do not utilize inter-agent communication like their physical and algorithmic counterparts. Instead, organisms in nature rely on a local awareness of other swarm members that facilitates proper swarm motion and behavior. This research aims to pursue an effective swarm algorithm using only line-of-sight proximity information and no inter-agent communication. It is expected that the swarm performance will be lower than …


Mapping And Visualizing Ancient Water Storage Systems With An Rov – An Approach Based On Fusing Stationary Scans Within A Particle Filter, William D. Mcvicker Dec 2012

Mapping And Visualizing Ancient Water Storage Systems With An Rov – An Approach Based On Fusing Stationary Scans Within A Particle Filter, William D. Mcvicker

Master's Theses

This paper presents a new method for constructing 2D maps of enclosed un- derwater structures using an underwater robot equipped with only a 2D scanning sonar, compass and depth sensor. In particular, no motion model or odometry is used. To accomplish this, a two step offline SLAM method is applied to a set of stationary sonar scans. In the first step, the change in position of the robot between each consecutive pair of stationary sonar scans is estimated using a particle filter. This set of pair wise relative scan positions is used to create an estimate of each scan’s position …


State Estimation For Tracking Of Tagged Sharks With An Auv, Christina Forney Dec 2011

State Estimation For Tracking Of Tagged Sharks With An Auv, Christina Forney

Master's Theses

Presented is a method for estimating the planar position, velocity, and orientation states of a tagged shark. The method is designed for implementation on an Autonomous Underwater Vehicle (AUV) equipped with a stereo-hydrophone and receiver system that detects acoustic signals transmitted by a tag. The particular hydrophone system used here provides a measurement of relative bearing angle to the tag, but does not provide the sign (+ or -) of the bearing angle. A particle filter was used for fusing measurements over time to produce a state estimate of the tag location. The particle filter combined with an active control …


Sensorchestra: Collaborative Sensing For Symbolic Location Recognition, Heng-Tze Cheng, Feng-Tso Sun, Senaka Buthpitiya, Martin L. Griss Jan 2011

Sensorchestra: Collaborative Sensing For Symbolic Location Recognition, Heng-Tze Cheng, Feng-Tso Sun, Senaka Buthpitiya, Martin L. Griss

Martin L Griss

"Symbolic location of a user, like a store name in a mall, is essential for context-based mobile advertising. Existing fingerprint- based localization using only a single phone is susceptible to noise, and has a major limitation in that the phone has to be held in the hand at all times. In this paper, we present SensOrchestra, a col- laborative sensing framework for symbolic location recognition that groups nearby phones to recognize ambient sounds and images of a location collaboratively. We investigated audio and image features, and designed a classifier fusion model to integrate estimates from diff erent phones. We also …


Monocular Vision And Image Correlation To Accomplish Autonomous Localization, Matthew Paul Schlachtman Jun 2010

Monocular Vision And Image Correlation To Accomplish Autonomous Localization, Matthew Paul Schlachtman

Master's Theses

For autonomous navigation, robots and vehicles must have accurate estimates of their current state (i.e. location and orientation) within an inertial coordinate frame. If a map is given a priori, the process of determining this state is known as localization. When operating in the outdoors, localization is often assumed to be a solved problem when GPS measurements are available. However, in urban canyons and other areas where GPS accuracy is decreased, additional techniques with other sensors and filtering are required.

This thesis aims to provide one such technique based on monocular vision. First, the system requires a map be generated, …