Open Access. Powered by Scholars. Published by Universities.®

Robotics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Robotics

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Jan 2013

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Christopher N. Roman

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.


A Pipeline For Structured Light Bathymetric Mapping, Gabrielle Inglis, Clara Smart, J. Vaughn, Chris Roman Oct 2012

A Pipeline For Structured Light Bathymetric Mapping, Gabrielle Inglis, Clara Smart, J. Vaughn, Chris Roman

Christopher N. Roman

This paper details a methodology for using structured light laser imaging to create high resolution bathymetric maps of the sea floor. The system includes a pair of stereo cameras and an inclined 532nm sheet laser mounted to a remotely operated vehicle (ROV). While a structured light system generally requires a single camera, a stereo vision set up is used here for in-situ calibration of the laser system geometry by triangulating points on the laser line. This allows for quick calibration at the survey site and does not require precise jigs or a controlled environment. A batch procedure to extract the …


Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Nov 1998

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Graduate School of Oceanography Faculty Publications

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.