Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Other Civil and Environmental Engineering

Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini Jun 2021

Atomistic Thermo-Mechanical Description Of The Deformation Behavior, Scaling Laws, And Constitutive Modeling Of Nanoporous Gold, Mohammed Hassan Yousef Saffarini

LSU Doctoral Dissertations

Metallic foams, or nanoporous (NP) metals as it is widely referred to in literature, with ligament sizes up to a few tens of nm show exceptional mechanical properties such as high strength and stiffness per weight ratio under different loading scenarios due to their high surface area to solid volume ratio. Therefore, they can be utilized in a wide range of applications making them of great interest to researchers. While their elasticity and yield strength have been the subject of several studies, very limited attention was given to the effect of size, strain rate, and temperature on the material plastic …


Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo Aug 2019

Uhpc Shear Keys In Concrete Bridge Superstructures, Craig Newtson, Brad Weldon, Elsy Flores, Jordan Varbel, William Toledo

Publications

This research investigated the use of locally produced ultra-high performance concrete (UHPC) as a grouting material to repair deteriorated shear keys. Shear keys are used in adjacent girder superstructures to produce monolithic behavior and load transfer across the structure. Shear key durability is a concern since shear key degradation can jeopardize the integrity of the structure. Transportation agencies have reported that 75% of distress in adjacent girder bridges is due to cracking and de-bonding along shear keys. Previous research has shown that locally produced UHPC has excellent mechanical and durability properties. UHPC has also been shown to have good bonding …


Enhancing The Durability And The Service Life Of Asphalt Pavements Through Innovative Light-Induced Self-Healing Materials, Marwa Hassan Dec 2018

Enhancing The Durability And The Service Life Of Asphalt Pavements Through Innovative Light-Induced Self-Healing Materials, Marwa Hassan

Data

Corresponding data set for Tran-SET Project No. 17BLSU02. Abstract of the final report is stated below for reference:

"The objective of this study was to evaluate the efficiency of a new generation of Ultraviolet (UV) light-induced self-healing polymers in enhancing the durability and self-healing properties of asphalt mixtures. Self-healing polymers were successfully synthesized in the laboratory and were characterized using Fourier Transform Infrared Spectroscopy (FTIR). In addition, Thermogravimetric Analysis (TGA) results showed that the synthesized polymers achieved the required thermal stability to resist asphalt mixture production processes. Viscosity results showed that addition of 5% Recycled Asphalt Shingle (RAS) and/or 20% …


Development Of A Self-Healing And Rejuvenating Mechanisms For Asphalt Mixtures Containing Recycled Asphalt Shingle, Marwa Hassan Dec 2018

Development Of A Self-Healing And Rejuvenating Mechanisms For Asphalt Mixtures Containing Recycled Asphalt Shingle, Marwa Hassan

Data

Corresponding data set for Tran-SET Project No. 17BLSU06. Abstract of the final report is stated below for reference:

"The objective of this study was to test the hypothesis that hollow-fibers encapsulating a rejuvenator product could improve both self-healing, rejuvenation, and mechanical properties of asphalt mixtures. Hollow-fibers containing a rejuvenating product were synthesized via a wet spinning procedure with sodium-alginate polymer as the encapsulating material. An optimization of the production parameters for the synthesis of fibers was performed to develop fibers suitable for high-temperature and shear stress environment typical of asphalt mixture production. A self-healing experiment was conducted to evaluate the …


Integrated Health Monitoring And Reinforcement Of Transportation Structures With Optimized Low-Cost Multifunctional Braided Cables, Ibrahim Karaman, Darren Hartl Dec 2018

Integrated Health Monitoring And Reinforcement Of Transportation Structures With Optimized Low-Cost Multifunctional Braided Cables, Ibrahim Karaman, Darren Hartl

Data

Corresponding data set for Tran-SET Project No. 17STTAM04. Abstract of the final report is stated below for reference:

"Corresponding data set for The objective of this research study is to design, fabricate, and characterize multifunctional high strength and self-sensing braided cables and structures using novel Fe-based shape memory alloys (SMAs). The system exploits unique properties of recently developed low-cost super-elastic FeMnAlNi SMAs, which enables excellent super-elastic properties, high strength, and self-sensing in structural health monitoring (SHM) systems. This novel material technology can be coupled with modeling efforts that allow for accurate prediction of both the materials and structural response during …


Development Of A Self-Powered Structural Health Monitoring System For Transportation Infrastructure, Aydin Karsilaya, Samer Dessouky, Athanassios Papagiannakis Dec 2018

Development Of A Self-Powered Structural Health Monitoring System For Transportation Infrastructure, Aydin Karsilaya, Samer Dessouky, Athanassios Papagiannakis

Data

Corresponding data set for Tran-SET Project No. 17PTAM03. Abstract of the final report is stated below for reference:

"Roadways and bridges play an important role in the economic and social health of society by connecting commerce and people. Economic growth and population expansion pose considerable burden on the aging infrastructure (i.e., pavements and bridges). There is a pressing need to develop structural health monitoring (SHM) technologies capable of collecting infrastructure utilization data. Doing so inexpensively with self-powered systems will revolutionize infrastructure monitoring technology, and will improve decision making enabling roadway and bridge preservation. In this study, a self-powered battery-less structural …


Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao Dec 2018

Use Of Ultra-High-Performance Fiber-Reinforced Concrete (Uhp-Frc) For Fast And Sustainable Repair Of Pavements, Shih-Ho Chao

Publications

This research presents a new methodology, which enables streets, roads, highways, bridges, and airfields to use an advanced fiber-reinforced concrete material, which can delay or prevent the deterioration of these transportation infrastructure when subjected to traffic and environmental loadings. The major problem of concrete is its considerable deterioration and limited service life due to its brittleness and limited durability. As a result, it requires frequent repair and eventual replacement, which consumes more natural resources. Ultra-high-performance fiber-reinforced concrete (UHP-FRC) introduces significant enhancement in the sustainability of concrete structures due to its dense microstructure and damage-tolerance characteristics. These characteristics can significantly reduce …


A Comprehensive Reliability-Based Framework For Corrosion Damage Monitoring And Repair Design Of Reinforced Concrete Structures, Homero Castaneda, Aydin Karsilaya, Ayman Okeil, Mahmoud Reda Taha Dec 2018

A Comprehensive Reliability-Based Framework For Corrosion Damage Monitoring And Repair Design Of Reinforced Concrete Structures, Homero Castaneda, Aydin Karsilaya, Ayman Okeil, Mahmoud Reda Taha

Publications

In this work, we developed a comprehensive framework for corrosion management of reinforced concrete (RC) structures. This framework includes critical steps of an effective approach to quantify the damage evolution as well as providing the timeframe for effective maintenance/repair strategies for corrosion assessment in RC structures. The framework included several activities including the use of indirect and direct inspection tools, theoretical development for damage prediction, experimental measurements and theoretical development of repair time based on reliability. The uniqueness of the framework is the integration of deterministic modeling of corrosion damage evolution by using mechanistic analysis with statistical modeling on corrosion …


Evaluation Of Comparative Damaging Effects Of Multiple Truck Axles For Flexible Pavements, Stefan Romanoschi, Athanassios Papagiannakis Dec 2018

Evaluation Of Comparative Damaging Effects Of Multiple Truck Axles For Flexible Pavements, Stefan Romanoschi, Athanassios Papagiannakis

Publications

This study aims at evaluating the effect of overlapping flexible pavement strain responses from truck axles that are not part of multiple axle configurations (i.e., tandem, triple and quad). For this purpose, a newly constructed pavement was instrumented with strain gauges installed at the bottom of the asphalt concrete base layer on US-287 south of Mansfield, TX. This pavement structure is typically used for medium- to high-volume roads in the South-Central region of the United States. The strain gauges were used to measure longitudinal and transverse strains under several passes of a test vehicle. This was a class 6 truck …