Open Access. Powered by Scholars. Published by Universities.®

Polymer Science Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Polymer Science

Multienzyme Immobilized Polymeric Membrane Reactor For The Transformation Of A Lignin Model Compound, Rupam Sarma, Md. Saiful Islam, Mark P. Running, Dibakar Bhattacharyya Apr 2018

Multienzyme Immobilized Polymeric Membrane Reactor For The Transformation Of A Lignin Model Compound, Rupam Sarma, Md. Saiful Islam, Mark P. Running, Dibakar Bhattacharyya

Chemical and Materials Engineering Faculty Publications

We have developed an integrated, multienzyme functionalized membrane reactor for bioconversion of a lignin model compound involving enzymatic catalysis. The membrane bioreactors were fabricated through the layer-by-layer assembly approach to immobilize three different enzymes (glucose oxidase, peroxidase and laccase) into pH-responsive membranes. This novel membrane reactor couples the in situ generation of hydrogen peroxide (by glucose oxidase) to oxidative conversion of a lignin model compound, guaiacylglycerol-β-guaiacyl ether (GGE). Preliminary investigation of the efficacy of these functional membranes towards GGE degradation is demonstrated under convective flow mode. Over 90% of the initial feed could be degraded with the multienzyme immobilized membranes …


Comparison Of Eosin And Fluorescein Conjugates For The Photoinitiation Of Cell-Compatible Polymer Coatings, Jacob L. Lilly, Anuhya Gottipati, Calvin F. Cahall, Mohamed Agoub, Brad J. Berron Jan 2018

Comparison Of Eosin And Fluorescein Conjugates For The Photoinitiation Of Cell-Compatible Polymer Coatings, Jacob L. Lilly, Anuhya Gottipati, Calvin F. Cahall, Mohamed Agoub, Brad J. Berron

Chemical and Materials Engineering Faculty Publications

Targeted photopolymerization is the basis for multiple diagnostic and cell encapsulation technologies. While eosin is used in conjunction with tertiary amines as a water-soluble photoinitiation system, eosin is not widely sold as a conjugate with antibodies and other targeting biomolecules. Here we evaluate the utility of fluorescein-labeled bioconjugates to photopolymerize targeted coatings on live cells. We show that although fluorescein conjugates absorb approximately 50% less light energy than eosin in matched photopolymerization experiments using a 530 nm LED lamp, appreciable polymer thicknesses can still be formed in cell compatible environments with fluorescein photosensitization. At low photoinitiator density, eosin allows more …