Open Access. Powered by Scholars. Published by Universities.®

Other Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Other Chemical Engineering

Simultaneous Economic And Risk-Based Routing Of Gas Pipelines, Seif-Eddeen K. Fateen Jan 2012

Simultaneous Economic And Risk-Based Routing Of Gas Pipelines, Seif-Eddeen K. Fateen

Seif-Eddeen K Fateen

No abstract provided.


Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski Jan 2012

Ogólnotechniczne Podstawy Biotechnologii Z Elementami Grafiki Inżynierskiej Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Materiały Odstresowujące, Wojciech M. Budzianowski Jan 2012

Materiały Odstresowujące, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Phosphate Protected Fluoride Nano-Phosphors, Joanna Cybinska, Chantal Lorbeer, Anja V. Mudring Jan 2012

Phosphate Protected Fluoride Nano-Phosphors, Joanna Cybinska, Chantal Lorbeer, Anja V. Mudring

Anja V. Mudring

A fast and easy 2-in-1 step microwave reaction procedure to phosphate coated nanofluorides allows for the formation of phosphate protected fluoride nanoparticles from simple lanthanide precursors in ionic liquids. The phosphate shell efficiently prevents the fluoride particle from decomposition in an atmosphere (containing oxygen and water) at elevated temperatures.


Mercuric Ionic Liquids: [Cnmim][Hgx3], Where N = 3, 4 And X = Cl, Br, Bert Mallick, Andreas Metlen, Mark Nieuwenhuyzen, Robin D. Rogers, Anja V. Mudring Jan 2012

Mercuric Ionic Liquids: [Cnmim][Hgx3], Where N = 3, 4 And X = Cl, Br, Bert Mallick, Andreas Metlen, Mark Nieuwenhuyzen, Robin D. Rogers, Anja V. Mudring

Anja V. Mudring

A series of mercury(II) ionic liquids, [Cnmim][HgX3], where [Cnmim] = n-alkyl-3-methylimidazolium with n = 3, 4 and X = Cl, Br, have been synthesized following two different synthetic approaches, and structurally characterized by means of single-crystal X-ray structure analysis ([C3mim][HgCl3] (1), Cc (No. 9), Z = 4, a = 16.831(4) Å, b = 10.7496(15) Å, c = 7.4661(14) Å, β = 105.97(2)°, V = 1298.7(4) Å3 at 298 K; [C4mim][HgCl3] (2), Cc (No. 9), Z = 4, a = 17.3178(28) Å, b = 10.7410(15) Å, c = 7.4706(14) Å, β = 105.590(13)°, V = 1338.5(4) Å3 at 170 K; [C3mim][HgBr3] …


Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring Jan 2012

Ultrasound-Assisted Synthesis Of Mesoporous Β-Ni(Oh)2 And Nio Nano-Sheets Using Ionic Liquids, Tarek Alammar, Osama Shekhah, Jonas Wohlgemuth, Anja V. Mudring

Anja V. Mudring

Via a facile ultrasound synthesis from nickel acetate and sodium hydroxide with ionic liquids as the solvent and template it is possible to obtain nano-β-Ni(OH)2 of various dimensionalities depending on the reaction conditions with the ionic liquid (IL) being the most important factor. Scanning electron microscopy (SEM) imaging showed β-Ni(OH)2 to form as nanosheets, nanorods and nanospheres depending on the IL. ILs with strong to moderate hydrogen bonding capability like [C3mimOH][Tf2N] (1-(3-hydroxypropyl)-3-methylimidazolium bis(trifluoromethanesulfonylamide)), [C4mim][Tf2N] (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylamide)) and [Edimim][Tf2N] (1-ethyl-2,3-diemethylimidazolium bis(trifluoromethanesulfonylamide)) lead to the formation of nanosheets whilst [Py4][Tf2N] (butyl-pyridinium bis(trifluoromethanesulfonylamide)) leads to nanoparticles and [N1888][Tf2N] (methyltrioctylammonium bis(trifluoromethanesulfonylamide)) to nanorods. Subsequent …


Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski Dec 2011

Hydrogen Production From Biogas By Oxy-Reforming: Reaction System Analysis, Aleksandra Terlecka, Wojciech M. Budzianowski

Wojciech Budzianowski

Oxy-reforming is emerging as an interesting alternative to conventional methods of hydrogen generation. The current article characterises this process through analysis of individual reactions: SMR (steam methane reforming), WGS (water gas shift) and CPO (catalytic partial oxidation). Analyses relate to optimisation of thermal conditions thus enabling cost-effectivenes of the process.